Cho số tự nhiên n > 2. CMR số n! - 1 có ít nhất 1 ước nguyên tố lớn hơn n
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
Với mỗi số nguyên dương n, kí hiệu Sn = 1!+2!+···+n!. Chứng minh rằng tồn tại số nguyên dương k sao cho Sk có ít nhất một ước nguyên tố lớn hơn 3^2019
Nhập số nguyên dương N (1≤ N ≤ 30000) từ bàn phím và đưa ra màn hình thông tin sau :
Dòng 1: số M là giá trị biểu thức √1 + √2 + .... + √N
Dòng 2: số nguyên tố nhỏ nhất còn lớn hơn M*N
Dòng 3: số tự nhiên nhỏ nhất có số ước bằng phần nguyên của √N, nếu không có in số 0.
Mọi Người giúp em với ạ. em đang cần câu trả lời gấp ạ
uses crt;
var n,i:integer;
m:real;
begin
clrscr;
repeat
write('Nhap n='); readln(n);
until (1<=n) and (n<=30000);
m:=0;
for i:=1 to n do
m:=m+sqrt(i);
writeln('m=',m:4:2);
readln;
end.
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 ( Đây là bài của chịnhunglth đó ạ)
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
Các bạn có thể trả lời vài câu hỏi cũng được.Bạn nào trả lời được nhiều mình sẽ ủng hộ cho nha
😑😐🙌🏿👐🏿🤲🏿🤜🏿🤛🏿✊🏿👊🏿👋🏿🤚🏿👉🏿👈🏿🖖🏿🤟🏿🤘🏿✌🏿🤞🏿🤙🏿👌🏿☝🏿👆🏿👇🏿🖕🏿🙏🏿
1 ) Chứng minh rằng có vô hạn số nguyên tổ
2) CMR : n!-1 có ít nhất 1 ước nguyên tố >n
1,
chúng ta đều biết số nguyên tố là số không chia hết cho bât kỳ số nào trừ 1 và chính số đó.
từ đó ta có công thức tạo số nguyên tố như sau: tích tất cả các số nguyên tố đã biết cộng một (1) thì sẽ cho ta một số nguyên tố mới.
và nếu ta lặp lại thuật toán trên vô số lần ( với mỗi lần ta thêm số nguyên tố mới vào) ta sẽ có vô số số nguyên tố
1. Cho a,b là hai số nguyên tố lớn hơn 2. CMR: a+b chia hết cho 2
2. Tìm số tự nhiên n nhỏ nhất biết rằng n:10 dư 7 và n:12 dư 9.
1.
Vì $a,b$ là hai số nguyên tố lớn hơn 2 nên $a,b$ đều là số lẻ.
$\Rightarrow a+b$ chẵn
$\Rightarrow a+b\vdots 2$
2.
Theo đề ra $n-7\vdots 10; n-9\vdots 12$
$\Rightarrow n-7+10\vdots 10; n-9+12\vdots 12$
$\Rightarrow n+3\vdots 10; n+3\vdots 12$
$\Rightarrow n+3=BC(10,12)$
Để $n$ nhỏ nhất thì $n+3=BCNN(10,12)$
$\Rightarrow n+3=60$
$\Rightarrow n=57$
Bài 6 : Chứng minh rằng các số sau đây nguyên tố cùng nhau:
a, 2 số lẻ liên tiếp
b,2n+5 và 3n+7
Bài 7 :Cho ƯCLN (a;b) = 1. CMR
a, ước chung lớn nhất của a và a - b bằng 1
b, a.b và a+b có ước chung lớn nhất bằng 1.
Bài 8 :Cho a,b là 2 số tự nhiên khác 0 không nguyên tố cùng nhau
a=4n+3;b=5n+1 (n thuộc N)
Tìm ước chung lớn nhất của a và b
gọi 2 số lẻ liên tiếp là 2K + 1 và 2K + 3
gọi d là ƯCLN( 2K+1;2K+3)
ta có ƯCLN(2k+1;2k+3)=d \(\Rightarrow\)2k+1 chia hết cho d 2k + 3 chia hết cho d
suy ra 2k+3 - 2k - 1 = 2 chia hết cho d
mà số lẻ ko chia hết cho 2
suy ra d = 1
vậy 2 số lẻ liên thiếp là 2 số nguyên tố cùng nhau
giúp giải khẩn cấp mng ơi:
1.cho stn n có 1995 ước số có 1 ước nguyên tố chẵn. chứng minh n là số chính phương, n chia hết 4
2. cho a là 1 hợp số, khi phân tích ra thừa số nguyên tố a chỉ chứa 2 thừa số nguyên tố khác nhau là p1 và p2. biết a^3 có tất cả 40 ước số. a^2 có bn ước số
3.tìm số tự nhiên n > hoặc = 1 sao cho tổng 1!+2!+3!+...+n! là một số chính phương
4. tìm số tự nhiên n có 2 c.s biết 2n+1 và 3n+1 đều là scp
5. chứng minh:
a)p và q là 2 số nguyên tố lớn hơn 3 thì p^2-q^2chia hết cho 24
b)Nếu a;a+k;a+2k (a và k thuộc N*) là các số nguyên tố lớn hơn 3 thì k chia hết 6
6.a)Một số nguyên tố chia 43 dư r (r là hợp số).TÌm r
b)1 số nguyên tố chia 30 dư r. Tìm r biết r ko là hợp số
Toán lớp 6Phân tích thành thừa số nguyên tố
Đinh Tuấn Việt 20/05/2015 lúc 22:51
Theo đề bài ta có:
a = p1m . p2n $\Rightarrow$⇒ a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.
nguyên 24/05/2015 lúc 16:50
Theo đề bài ta có:
a = p1m . p2n $$
a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$$
m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 0
Captain America
đề 1 chứng minh rằng với mọi số tự nhiên n ,các số sau là số nguyên tố cùng nhau
a/ 7n+10 và 5n+7
b/ 2n+ và 4n+8
đề 2 chứng minh rằng có vô số tự nhiên n để n+15 và n+72 là hai số nguyên tố cùng nhau
Đề 3 số tự nhiên n có 54 ước , Chứng minh rằng tích các ước của n bằng n^27
Đề 4 tìm số tự nhiên khác 0 nhỏ hơn 60 có nhiều ước nhất