Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 12 2018 lúc 16:22

Đáp án A

a − b a 3 − b 3 − ( a 3 − b 3 ) 2 = a 2 3 + b 2 3 + a b 3 − ( a 2 3 + b 2 3 − 2 a b 3 ) = 3 a b 3

Trần Quang Hiếu
Xem chi tiết
Vương Hạ Di
12 tháng 9 2017 lúc 22:06

a) Chỉ cần 1 cặp góc so le trong bằng nhau thì tất cả các cặp góc so le trong, so le ngoài đều bằng nhau.

b) Chỉ cần 1 cặp góc so le trong bằng nhau thì tất cả các cặp góc so le trong, so le ngoài, đồng vị, trong cùng phía đều bằng nhau.

hihihi123
12 tháng 9 2017 lúc 22:36

Toán lớp 7

(minh họa)

a,Giả sử:a//b

Vì A1 và B3 là 2 cặp góc sole ngoài(đề bài)

=>A1=B3(theo tính chất của 2 đường thẳng song song)

b,Nếu có 1 đường thẳng cắt 2 đường thẳng nào đó và tro

Lại có A2 và B4 là 2 cặp góc so le ngoài(đề bài)

=>A2=B4(theo tính chất của 2 đường thẳng song song)

b,Kết luận(phát biểu)

Nếu có 1 đường thẳng cắt 2 đường thẳng nào đó và trong các góc tạo thanh có một cặp góc sole trong,ngoài bằng nhau thì:

+Hai góc còn lại bằng nhau

+2 góc đồng vị bằng nhau

Nếu một đường thẳng cắt 2 đường thẳng song song thì:

-Hai góc sole trong/ngoài bằng nhau

-Hai góc đồng vị bằng nhau

-Hai góc trong cùng phía bằng nhau

chuche
Xem chi tiết
Nguyễn Hoàng Minh
31 tháng 10 2021 lúc 15:39

\(5,M=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\\ M=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]\\ M=1\left(1-3ab\right)=1-3ab\ge1-\dfrac{3\left(a+b\right)^2}{4}=1-\dfrac{3}{4}=\dfrac{1}{4}\\ M_{min}=\dfrac{1}{4}\Leftrightarrow a=b=\dfrac{1}{2}\)

 

anh pro
Xem chi tiết
Lấp La Lấp Lánh
4 tháng 11 2021 lúc 13:05

Câu 5:

\(a+b=1\Rightarrow a=1-b\)

\(M=a^3+b^3=\left(1-b\right)^3+b^3=1-3b+3b^2-b^3+b^3\)

\(=1-3b+3b^2=3\left(b^2-b+\dfrac{1}{4}\right)+\dfrac{1}{4}=3\left(b-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)

\(minM=\dfrac{1}{4}\Leftrightarrow a=b=\dfrac{1}{2}\)

Lấp La Lấp Lánh
4 tháng 11 2021 lúc 13:21

Câu 7:

\(a^3+b^3+abc\ge ab\left(a+b+c\right)\)

\(\Leftrightarrow a^3+b^3+abc-ab\left(a+b+c\right)\ge0\)

\(\Leftrightarrow a^3+b^3-a^2b-ab^2\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng do a,b dương)

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

hoàng bảo nam
Xem chi tiết
hoàng bảo nam
8 tháng 4 2022 lúc 13:12

giúp mình vs

Nguyễn Việt Lâm
8 tháng 4 2022 lúc 13:50

5.

Với mọi a;b ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow2a^2+2b^2\ge a^2+b^2+2ab\)

\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2=\dfrac{1}{2}\)

\(M=a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)=a^2+b^2-ab\)

\(M=\dfrac{3}{2}\left(a^2+b^2\right)-\dfrac{1}{2}\left(a+b\right)^2=\dfrac{3}{2}\left(a^2+b^2\right)-\dfrac{1}{2}\ge\dfrac{3}{2}.\dfrac{1}{2}-\dfrac{1}{2}=\dfrac{1}{4}\)

\(M_{min}=\dfrac{1}{4}\) khi \(a=b=\dfrac{1}{2}\)

6.

Do \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=2>0\)

Mà \(a^2-ab+b^2>0\Rightarrow a+b>0\)

Mặt khác với mọi a;b ta có:

\(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow a^2+b^2+2ab\ge4ab\)

\(\Rightarrow\left(a+b\right)^2\ge4ab\Rightarrow ab\le\dfrac{1}{4}\left(a+b\right)^2\) \(\Rightarrow-ab\ge-\dfrac{1}{4}\left(a+b\right)^2\)

Từ đó:

\(2=a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\ge\left(a+b\right)^3-3.\dfrac{1}{4}\left(a+b\right)^2\left(a+b\right)=\dfrac{1}{4}\left(a+b\right)^3\)

\(\Rightarrow\left(a+b\right)^3\le8\Rightarrow a+b\le2\)

\(N_{max}=2\) khi \(a=b=1\)

Nguyễn Việt Lâm
8 tháng 4 2022 lúc 13:52

7.

Ta có:

\(a^3+b^3+abc=\left(a+b\right)\left(a^2+b^2-ab\right)+abc\ge\left(a+b\right)\left(2ab-ab\right)+abc\)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b\)

8.

\(\left|a+b\right|>\left|a-b\right|\Leftrightarrow\left(a+b\right)^2>\left(a-b\right)^2\)

\(\Leftrightarrow a^2+2ab+b^2>a^2-2ab+b^2\)

\(\Leftrightarrow4ab>0\Leftrightarrow ab>0\)

\(\Rightarrow a;b\) cùng dấu

Nguyễn Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 3 2022 lúc 14:02

a: Thực hiện 5 vòng lặp

T=35

j=11

b: Câu lệnh chưa biết trước là while-do, và chương trình của bạn chỉ cần sửa lại chỗ j:=1 thành b:=1 mà thôi

Đỗ Ngọc Huyền
Xem chi tiết
Phùng Minh Quân
27 tháng 3 2018 lúc 17:59

\(a)\) Ta có : 

\(M=a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\)

Thay \(a+b=1\) vào \(M=\left(a+b\right)\left(a^2+b^2-ab\right)\) ta được : 

\(M=\left(a+b\right)\left(a^2+b^2-ab\right)=1\left(a^2+b^2-ab\right)=a^2+b^2-ab\)

Lại có : 

\(a^2\ge0\)

\(b^2\ge0\)

\(\Rightarrow\)\(a^2+b^2\ge0\)

\(\Rightarrow\)\(a^2+b^2-ab\ge-ab\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a^2=0\\b^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}}\)

Vậy \(M_{min}=-ab\) khi \(a=b=0\)

Sai thì thôi nhé, mk mới lớp 7 

PaiN zeD kAmi
27 tháng 3 2018 lúc 17:59

dytt me dễ vãi lone

\(a^3+\frac{1}{8}+\frac{1}{8}\ge3\sqrt[3]{\frac{a^3.1}{8.8}}=\frac{3}{4}a.\)

\(b^3+\frac{1}{8}+\frac{1}{8}\ge\frac{3}{4}b\)

\(M+\frac{4}{8}\ge\frac{3}{4}\left(a+b\right)=\frac{3}{4}\Leftrightarrow M\ge\frac{3}{4}-\frac{4}{8}=?\) tự tính dcmmm

b.

\(a^3+1+1\ge3\sqrt[3]{a^3}=3a\)

\(b^3+1+1\ge3b\)

\(a^3+b^3+4\ge3\left(A+b\right)\)

cái dmcmmm a^3+b^3=2 suy ra

\(6\ge3\left(a+b\right)\)

\(2\ge a+b\)

dytt cụ m tự kết luận

chuche
Xem chi tiết
Nguyễn Hoàng Minh
31 tháng 10 2021 lúc 18:12

Câu 9:

\(a,\left(a+1\right)^2\ge4a\\ \Leftrightarrow a^2+2a+1\ge4a\\ \Leftrightarrow a^2-2a+1\ge0\\ \Leftrightarrow\left(a-1\right)^2\ge0\left(luôn.đúng\right)\)

Dấu \("="\Leftrightarrow a=1\)

\(b,\) Áp dụng BĐT cosi: \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}\cdot2\sqrt{b}\cdot2\sqrt{c}=8\sqrt{abc}=8\)

Dấu \("="\Leftrightarrow a=b=c=1\)

Câu 10:

\(a,\left(a+b\right)^2\le2\left(a^2+b^2\right)\\ \Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\\ \Leftrightarrow a^2-2ab+b^2\ge0\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(luôn.đúng\right)\)

Dấu \("="\Leftrightarrow a=b\)

\(b,\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\le3a^2+3b^2+3c^2\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(luôn.đúng\right)\)

Dấu \("="\Leftrightarrow a=b=c\)

Câu 13:

\(M=\left(a^2+ab+\dfrac{1}{4}b^2\right)-3\left(a+\dfrac{1}{2}b\right)+\dfrac{3}{4}b^2-\dfrac{3}{2}b+2021\\ M=\left[\left(a+\dfrac{1}{2}b\right)^2-2\cdot\dfrac{3}{2}\left(a+\dfrac{1}{2}b\right)+\dfrac{9}{4}\right]+\dfrac{3}{4}\left(b^2-2b+1\right)+2018\\ M=\left(a+\dfrac{1}{2}b-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(b-1\right)^2+2018\ge2018\\ M_{min}=2018\Leftrightarrow\left\{{}\begin{matrix}a+\dfrac{1}{2}b=\dfrac{3}{2}\\b=1\end{matrix}\right.\Leftrightarrow a=b=1\)

Akai Haruma
31 tháng 10 2021 lúc 20:30

Câu 6:

$2=(a+b)(a^2-ab+b^2)>0$

$\Rightarrow a+b>0$

$4(a^3+b^3)-N^3=4(a^3+b^3)-(a+b)^3$

$=3(a^3+b^3)-3ab(a+b)=(a+b)(a-b)^2\geq 0$
$\Rightarrow N^3\leq 4(a^3+b^3)=8$

$\Rightarrow N\leq 2$

Vậy $N_{\max}=2$

Akai Haruma
31 tháng 10 2021 lúc 20:32

Câu 7:

BĐT $\Leftrightarrow a^3+b^3\geq ab(a+b)$

$\Leftrightarrow a^3+b^3-ab(a+b)\geq 0$

$\Leftrightarrow (a-b)^2(a+b)\geq 0$ (luôn đúng với mọi $a,b,c>0$)

Vậy ta có đpcm

Dấu "=" xảy ra khi $a=b>0$, $c$ dương bất kỳ. 

Vương Đức Chính
Xem chi tiết