Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Vu
Xem chi tiết
Kon Kon
Xem chi tiết
vu phuong linh
Xem chi tiết
%Hz@
8 tháng 3 2020 lúc 9:37

A B C H D E

 TA CÓ \(\Delta ABC\)CÂN TẠI A

\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)

A) VÌ AH VUÔNG GÓC VỚI BC

=> AH LÀ ĐƯỜNG CAO

MÀ TRONG TAM GIÁC CÂN ĐƯỜNG CAO CŨNG CHÍNH LÀ ĐƯỜNG TRUNG TUYẾN

=> AH LÀ TRUNG TUYẾN CỦA BC

=> BH=CH(ĐPCM)

B) XÉT TAM GIÁC NHA

Khách vãng lai đã xóa
Lê Thị Nhung
8 tháng 3 2020 lúc 9:41

A B H C D E

Vì tam giác ABC cân tại A suy ra AB=AC, góc B=góc C

Xét tam giác ABH và tam giác ACH

có AB=AC(CMT)

góc AHC=góc AHB (=900)

góc B=góc C

suy ra tam giác ABH = tam giác ACH (cạnh huyền-góc nhọn)

suy ra BH=CH (hai cạnh tương ứng)

b) Xét tam giac BHD và tam giác CHE

có BH=CH (CMT)

góc B=góc C

góc HDB = góc HEC = 900

suy ra tam giac BHD = tam giác CHE (cạnh huyền-góc nhọn)

suy ra BD=CE (hai cạnh tương ứng)

Khách vãng lai đã xóa
hhaidz
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2023 lúc 10:48

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>HB=HC

b: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có

HB=HC

góc B=góc C

=>ΔHDB=ΔHEC

=>BD=CE

Oanh Nguyễn Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2023 lúc 20:14

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=AB^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\\BH=\dfrac{9^2}{15}=5.4\left(cm\right)\end{matrix}\right.\)

b:

ΔAHB vuông tại H có HD là đường cao

nên \(HD\cdot AB=HA\cdot HB\)

ΔAHC vuông tại H có HE là đường cao

nên \(HE\cdot AC=HA\cdot HC\)

 \(HD\cdot AB+HE\cdot AC\)

\(=HA\cdot HB+HA\cdot HC=HA\cdot\left(HB+HC\right)\)

\(=HA\cdot BC=AB\cdot AC\)

c: Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

ΔABC vuông tại A có AM là trung tuyến

nên AM=MB=MC

\(\widehat{IEA}+\widehat{IAE}=\widehat{DEA}+\widehat{IAC}\)

\(=\widehat{DHA}+\widehat{MCA}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>AM vuông góc DE tại I

ΔADE vuông tại A có AI là đường cao

nên \(\dfrac{1}{AI^2}=\dfrac{1}{AE^2}+\dfrac{1}{AD^2}\)

Phan Thi Hong Nhung Phan...
Xem chi tiết
Tiến Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 4 2023 lúc 15:18

a: Xet ΔHBA và ΔABC có

góc BHA=góc BAC

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: ΔABC vuông tại A có AH vuông góc BC

nên BA^2=BH*BC

\(AB=\sqrt{3\cdot12}=6\left(cm\right)\)

\(AH=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)

c: Xet ΔCAE có KD//AE
nên KD/AE=CK/CE

Xét ΔCEB có KH//EB

nên KH/EB=CK/CE=KD/AE
mà AE=EB

nên KH=KD

Emngutoan
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 11 2021 lúc 23:37

a: Xét ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HD là đường cao

nên \(AD\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AD\cdot AC\)

Nguyễn Vũ Trường Giang
Xem chi tiết
huy nguyễn
Xem chi tiết