Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngọc Anh

Những câu hỏi liên quan
super xity
Xem chi tiết
super xity
23 tháng 7 2015 lúc 15:21

bgggggggggggggggggggggytttttttttttrcccccccccceeeeeeeeeeeeedx

Đào Đức Doanh
25 tháng 3 2016 lúc 21:22

rtyuiuydghfrtghhfrfghhgfghjhg

Xem chi tiết
duc cuong
Xem chi tiết
Thái Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2023 lúc 20:30

x(y-z)-y(x+z)+z(x-y)

\(=xy-xz-xy-yz+xz-yz\)

\(=-2yz\)

Chuu
29 tháng 10 2023 lúc 20:31

Ta có:

`x(y - z) - y(x + z) + z(x - y) =xy-xz -xy-yz+xz-yz = -2yz`

Vậy `x(y - z) - y(x + z) + z(x - y) =-2yz`

Law Trafargal
Xem chi tiết
Akai Haruma
1 tháng 12 2019 lúc 11:47

Lời giải:

Từ \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=2\)

\(\Rightarrow (x+y+z)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=2(x+y+z)\)

\(\Leftrightarrow \frac{x^2}{y+z}+\frac{xy}{x+z}+\frac{xz}{x+y}+\frac{xy}{y+z}+\frac{y^2}{x+z}+\frac{zy}{x+y}+\frac{xz}{y+z}+\frac{zy}{x+z}+\frac{z^2}{x+y}=2(x+y+z)\)

\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+\frac{xy+zy}{x+z}+\frac{xz+yz}{x+y}+\frac{xy+xz}{y+z}=2(x+y+z)\)

\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+y+z+x=2(x+y+z)\)

\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=x+y+z\) (đpcm)

Khách vãng lai đã xóa
nguyen bao tram
Xem chi tiết
0o0 Nguyễn Văn Cừ 0o0
28 tháng 7 2017 lúc 15:19

toán lớp 8 đúng ko

x,y,z không âm, ta có: 
Áp dụng bất đẳng thức côsi cho 2 số không âm : x và y 
=> x +y >= 2 căn(xy) (1) 
Áp dụng bất đẳng thức côsi cho 2 số không âm : zvà y 
=> y +z >= 2 căn(yz) (2) 
Áp dụng bất đẳng thức côsi cho 2 số không âm : x và z 
=> z +x >= 2 căn(xz) (3) 
nhân (1)(2)(3) => (x+y)(y+z)(z+x) >= 8 căn (x^2 y^2 z^2) 
<=>(x+y)(y+z)(z+x) >= 8xyz 
=> Điều phải chứng minh (theo bdt Côsi dấu "=" xảy ra khi x = y =z = 0 và 1)

       Đáp số :.........................

Lê Văn Việt
Xem chi tiết
Lê Minh Long
2 tháng 11 2017 lúc 22:21

Ta có : \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)=\(\frac{x+y+z}{y+z+x}\)(áp dụng tính chất của dãy tỉ số bằng nhau)

Với x+y+z=0 => \(\frac{x}{y}=\frac{0}{0}\)(loại)

Với x+y+z khác 0 suy ra \(\frac{x+y+z}{y+z+x}\)=1 

Suy ra x=y=z

nguyen thi bao tien
Xem chi tiết
olm (admin@gmail.com)
2 tháng 10 2019 lúc 12:40

Áp dụng BĐT Cauchy cho 2 số không âm:

\(x+y\ge2\sqrt{xy};y+z\ge2\sqrt{yz};x+z\ge2\sqrt{xz}\);

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\sqrt{\left(xyz\right)^2}=8xyz\)

(Dấu "="\(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=z\end{cases}}\Leftrightarrow x=y=z\left(đpcm\right)\))

Cao Thanh Nga
Xem chi tiết
Cao Thanh Nga
Xem chi tiết
Khánh Hương Lê Thị
3 tháng 6 2018 lúc 19:27

L8 đã học hằng đẳng thức chưa e nhỉ?

~Mưa_Rain~
19 tháng 6 2018 lúc 10:00

hình như rồi