chứng minh z=x+y
Cho x / 2014 = y / 2015 = z / 1016 Chứng minh rằng 4(x - y) . (y - z) = (z - x)^2
Cho x / y = y / z Chứng minh rằng x^2 + y^2 / y^2 + x^2 = x / z
bgggggggggggggggggggggytttttttttttrcccccccccceeeeeeeeeeeeedx
cho x/z = z/y. chứng minh rằng (x2 + z2)/(y2 + z2) = x/ycho x/z = z/y. chứng minh rằng (x2 + z2)/(y2 + z2) = x/y
a) Chứng minh rằng nếu 2(x+y) = 5(y+z) = 3(z+x)
Thì \(\dfrac{x-y}{4}=\dfrac{y-z}{5}\)
b) Cho \(x^2=yz\) . Chứng minh rằng \(\dfrac{x^2+y^2}{y^2+z^2}=\dfrac{x}{z}\)
Chứng minh đẳng thức:
x(y - z) - y(x + z) + z(x - y) = -2yz
x(y-z)-y(x+z)+z(x-y)
\(=xy-xz-xy-yz+xz-yz\)
\(=-2yz\)
Ta có:
`x(y - z) - y(x + z) + z(x - y) =xy-xz -xy-yz+xz-yz = -2yz`
Vậy `x(y - z) - y(x + z) + z(x - y) =-2yz`
Cho x/y+z + y/x+z + z/x+y = 2. Chứng minh x^2/(y+z) + y^2/(x+z)+ z^2/(x+y)=x+y+z
Lời giải:
Từ \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=2\)
\(\Rightarrow (x+y+z)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=2(x+y+z)\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{xy}{x+z}+\frac{xz}{x+y}+\frac{xy}{y+z}+\frac{y^2}{x+z}+\frac{zy}{x+y}+\frac{xz}{y+z}+\frac{zy}{x+z}+\frac{z^2}{x+y}=2(x+y+z)\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+\frac{xy+zy}{x+z}+\frac{xz+yz}{x+y}+\frac{xy+xz}{y+z}=2(x+y+z)\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+y+z+x=2(x+y+z)\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=x+y+z\) (đpcm)
Cho x, y, z duong thrả (x+y)(y+z(z+x)=8xyz. Chứng minh x=y=z
toán lớp 8 đúng ko
x,y,z không âm, ta có:
Áp dụng bất đẳng thức côsi cho 2 số không âm : x và y
=> x +y >= 2 căn(xy) (1)
Áp dụng bất đẳng thức côsi cho 2 số không âm : zvà y
=> y +z >= 2 căn(yz) (2)
Áp dụng bất đẳng thức côsi cho 2 số không âm : x và z
=> z +x >= 2 căn(xz) (3)
nhân (1)(2)(3) => (x+y)(y+z)(z+x) >= 8 căn (x^2 y^2 z^2)
<=>(x+y)(y+z)(z+x) >= 8xyz
=> Điều phải chứng minh (theo bdt Côsi dấu "=" xảy ra khi x = y =z = 0 và 1)
Đáp số :.........................
cho x/y=y/z=z/x. chứng minh rằng x=y=z
Ta có : \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)=\(\frac{x+y+z}{y+z+x}\)(áp dụng tính chất của dãy tỉ số bằng nhau)
Với x+y+z=0 => \(\frac{x}{y}=\frac{0}{0}\)(loại)
Với x+y+z khác 0 suy ra \(\frac{x+y+z}{y+z+x}\)=1
Suy ra x=y=z
Cho x,y,z> 0 bkết (x+y)(y+z)(z+x)=8xyz. Chứng minh x=y=z
Áp dụng BĐT Cauchy cho 2 số không âm:
\(x+y\ge2\sqrt{xy};y+z\ge2\sqrt{yz};x+z\ge2\sqrt{xz}\);
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\sqrt{\left(xyz\right)^2}=8xyz\)
(Dấu "="\(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=z\end{cases}}\Leftrightarrow x=y=z\left(đpcm\right)\))
Chứng minh rằng:
(y-z)/(x-y)(x-z) + (z-x)/(y-z)(y-x) + (x-y)/(z-x)(z-y) = 2/(x-y) + 2/(y-z) + 2/(z-x)
Chứng minh rằng:
(y-z)/(x-y)(x-z) + (z-x)/(y-z)(y-x) + (x-y)/(z-x)(z-y) = 2/(x-y) + 2/(y-z) + 2/(z-x)
L8 đã học hằng đẳng thức chưa e nhỉ?