Tìm các số nguyên a,b,c thỏa mãn cả hai phương trình 2a+3b=6 và 3a+4c=1.
Cho a;b;c là các số không âm thỏa mãn:2a+b=6-3c;3a+4b=3c+4.Tìm min E=2a+3b-4c
tìm các số nguyên a,b,c thỏa mãn hệ pt \(\int^{2a+3b=5}_{3a-4c=6}\)
bài này thu gọn là tìm nghiệm nguyên của pt 9b+8c=3 ( ai giúp với)
pt(1) nhân 3 ; pt (2) nhân 2 sau đó trừ hai pt đc pt bậc nhất hai ẩn b;c
tìm nghiệm nguyên pt thay vào tìm a
nhưng bài này hình như phải giải pt nghiệm nguyên cậu giải thử chỗ pt nghiệm nguyên đi thắng
(1) x 3 - (2) x 2 = 3 <=> 9b + 8c = 3 <=> c \(=\frac{3-9b}{8}=\frac{-8b-8-b+11}{8}=-8-\frac{b-11}{8}\)
Vì c thuộc Z => (b -11 )/8 thuộc Z => b - 11 chia hết cho 8 >b - 11 = 8t ( t thuọc Z )
=> b = 8t + 11 thay vào tìm c => a
KL :..
A, Cho 3 số a;b;c thỏa mãn \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)và 3a+2b-c khác 0 . Tính giá trị của biểu thức: \(B=\frac{a+7b-2c}{3a+2b-c}\)
B, Cho 3 số a;b;c thỏa mãn \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)và 3a+2b-c=4 . Tìm các số a;b;c
a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\); \(b=3k\); \(c=5k\)
Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)
b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)
\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)
\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)
\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)
\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)
Do đó: +) \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)
+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)
+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)
Cho a,b,c là các số không âm thoả mãn 2a+b=6-3c và 3a+4b=3c+4. Tìm giá trị lớn nhất và nhỏ nhất của E= 2a+3b-4c
Help me
Cho \(a\) và \(b\) là các số tự nhiên thỏa mãn \(2a^2+2=3b^2+b\). Chứng minh rằng: \(a-b\) và \(3a+3b+1\) là các số chính phương.
Để chứng minh rằng √(a-b) và √(3a+3b+1) là các số chính phương, ta sẽ điều chỉnh phương trình ban đầu để tìm mối liên hệ giữa các biểu thức này. Phương trình ban đầu: 2^(2+a) = 3^(2+b) Ta có thể viết lại phương trình theo dạng: (2^2)^((1/2)+a/2) = (3^2)^((1/2)+b/2) Simplifying the exponents, we get: 4^(1/2)*4^(a/2) = 9^(1/2)*9^(b/2) Taking square roots of both sides, we have: √4*√(4^a) = √9*√(9^b) Simplifying further, we obtain: 22*(√(4^a)) = 32*(√(9^b)) Since (√x)^y is equal to x^(y/), we can rewrite the equation as follows: 22*(4^a)/ = 32*(9^b)/ Now let's examine the expressions inside the square roots: √(a-b) can be written as (√((22*(4^a))/ - (32*(9^b))/)) Similarly, √(3*a + 3*b + ) can be written as (√((22*(4^a))/ + (32*(9^b))/)) We can see that both expressions are in the form of a difference and sum of two squares. Therefore, it follows that both √(a-b) and √(3*a + 3*b + ) are perfect squares.
Cho các số a,b,c thỏa mãn 0<a,b,c<1/2 và 2a+3b+4c=3
Tìm min P=\(\frac{2}{a\left(3b+4c-2\right)}+\frac{9}{b\left(4a+8c-3\right)}+\frac{8}{c\left(2a+3b-1\right)}\)
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:
Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mìnhChỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏiĐể câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:
Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mìnhChỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏiCho a,b,c là các số không âm thỏa mãn 2a+3c=4 và 5b+c=1 . Tìm giá trị lớn nhất của P=2a+3b+4c
Câu 5. Tìm các số x thỏa mãn cả hai bất phương trình sau x>3 và x<8
A. x<8
b. 3<x<8
c. 3>x>8
d. x>3
câu 6: tìm các số x thỏa mãn cả 2 bất phương trình sau x>5 và x>3
A. x<5
B. 3<x<5
C. x>3
D. c>5
Câu 5. Tìm các số x thỏa mãn cả hai bất phương trình sau x>3 và x<8
A. x<8
b. 3<x<8
c. 3>x>8
d. x>3
câu 6: tìm các số x thỏa mãn cả 2 bất phương trình sau x>5 và x>3
A. x<5
B. 3<x<5
C. x>3
D. c>5
Cho a, b , c ko âm và thỏa mãn \(\hept{\begin{cases}2a+b+2c=6\\3a+4b-3c=4\end{cases}}\) . Tìm GTLN và GTNT của P = 2a + 3b - 4c
Bạn nào zúp vs ạ !!!
\(\hept{\begin{cases}2a+b+2c=6\\3a+4b-3c=4\end{cases}}\)\(\Rightarrow a+3b-5c=-2\)
\(\Rightarrow3b=-2+5c-a\)\(\Rightarrow3b+2a-4c=-2+5c-a+2a-4c\)
\(\Rightarrow P=-2+a+c\)
Lại có : \(2a+b+2c=6\Rightarrow2\left(a+c\right)\le6\)
\(\Rightarrow a+c\le3\)
\(\Rightarrow P\le-2+3=1\Rightarrow P\le1\)
Dấu " = " sảy ra \(\Leftrightarrow\hept{\begin{cases}b=0\\3a-3c=4\\2a+2c=6\end{cases}}\)\(\Rightarrow\hept{\begin{cases}b=0\\3a-3c=4\\3a+3c=9\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=\frac{13}{6}\\b=0\\c=\frac{5}{6}\end{cases}}\)
Chị chỉ tìm được Max thui
\(\hept{\begin{cases}2a+b+2c=6\\3a+4b-3c=4\end{cases}}\)
<=> \(\hept{\begin{cases}b+2c=6-2a\\4b-3c=4-3a\end{cases}}\)
<=> \(\hept{\begin{cases}c=\frac{20}{11}-\frac{5a}{11}\\b=\frac{26}{11}-\frac{12}{11}a\end{cases}}\)
P = \(2a+3\left(\frac{26}{11}-\frac{12}{11}a\right)-4\left(\frac{20}{11}-\frac{5a}{11}\right)\)
\(=-\frac{2}{11}+\frac{6}{11}a\ge-\frac{2}{11}\)
Dấu "=" xảy ra <=> a = 0 => c =20/11 và b = 26/11
Vậy min P = -2/11 tại a = 0; b = 26/11 và c= 20/11
Cách tìm max khác:
Ta có: \(\hept{\begin{cases}2a+b+2c=6\\3a+4b-3c=4\end{cases}}\)
<=> \(\hept{\begin{cases}2a+2c=6-b\\3a-3c=4-4b\end{cases}}\) <=> \(\hept{\begin{cases}a+c=3-\frac{b}{2}\\a-c=\frac{4}{3}-\frac{4b}{3}\end{cases}}\)
<=> \(\hept{\begin{cases}a=\frac{13}{6}-\frac{11b}{12}\\c=\frac{5}{6}+\frac{5}{12}b\end{cases}}\)
khi đó P = \(2\left(\frac{13}{6}-\frac{11b}{12}\right)+3b-4\left(\frac{5}{6}+\frac{5}{12}b\right)=1-\frac{1}{2}b\le1\)
Dấu bằng xảy ra khi và chỉ khi b = 0 khi đó a = 13/6 và c = 5/6( thỏa mãn)
Vậy maxP = 1 tại a = 13/6 ; b = 0 ; c = 5/6.
cho a và b là các số tự nhiên thỏa mãn 2a2 +a =3b2+b.cmr a-b và 3a+3b+1 là các số chính phương