Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lương Bảo Trân
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2021 lúc 14:45

Bài 1:

Ta có: \(4-2\left(x+1\right)=2\)

\(\Leftrightarrow2\left(x+1\right)=2\)

\(\Leftrightarrow x+1=1\)

hay x=0

Bài 2: 

Ta có: \(\left|2x-3\right|-1=2\)

\(\Leftrightarrow\left|2x-3\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)

Đậu Phạm Nhật Nguyên
24 tháng 4 2022 lúc 15:44

chưa biết

Kitana
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 2 2021 lúc 21:03

Bạn vào biểu tượng \(\Sigma\) để nhập biểu thức cho chính xác nhé

Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Ng Linhhh
Xem chi tiết
Trần Minh Hiếu
25 tháng 12 2022 lúc 20:58

\(3\left(x-2\right)+4\left(x-1\right)=25\) 

\(\Leftrightarrow3x-6+4x-4=25\) 

\(\Leftrightarrow7x=35\) 

\(\Leftrightarrow x=5\)

Trần Minh Hiếu
25 tháng 12 2022 lúc 21:01

\(\left(5x-3\right)\left(x-2\right)=\left(x-1\right)\left(x-2\right)\) 

\(\Leftrightarrow\left(5x-3\right)\left(x-2\right)-\left(x-1\right)\left(x-2\right)=0\) 

\(\Leftrightarrow\left(x-2\right)\left(5x-3-x+1\right)=0\) 

\(\Leftrightarrow\left(x-2\right)\left(4x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{2}\end{matrix}\right.\)

Trần Minh Hiếu
25 tháng 12 2022 lúc 21:04

\(\left(x-2\right)^2=4\left(x-1\right)^2\)

\(\Leftrightarrow\left(x-2\right)^2-4\left(x-1\right)^2=0\) 

\(\Leftrightarrow\left[\left(x-2\right)-2\left(x-1\right)\right]\left[\left(x-2\right)+2\left(x-1\right)\right]=0\) 

\(\Leftrightarrow\left(x-2-2x+2\right)\left(x-2+2x-2\right)=0\) 

\(\Leftrightarrow\left(-x\right)\left(3x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\3x-4=0\end{matrix}\right.\) 

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)

Phạm Phương Linh
Xem chi tiết
Akai Haruma
30 tháng 7 2021 lúc 16:35

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

Akai Haruma
30 tháng 7 2021 lúc 16:36

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

Akai Haruma
30 tháng 7 2021 lúc 16:41

3.

Đặt $x+3=a; 7-x=b$ thì $a+b=10$ 

$C=a^4+b^4$

Áp dụng BĐT Bunhiacopxky:

$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$

$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$

$\Rightarrow a^2+b^2\geq 50$

$\Rightarrow C\geq \frac{50^2}{2}=1250$

Vậy $C_{\min}=1250$

Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$

 

 

Kitana
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 2 2021 lúc 21:37

a) Ta có: \(P=\left(\dfrac{x^2-1}{x^4-x^2+1}+\dfrac{2}{x^6+1}-\dfrac{1}{x^2+1}\right)\cdot\left(x^2-\dfrac{x^4+x^2-1}{x^4+x^2+1}\right)\)

\(=\left(\dfrac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\dfrac{2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}-\dfrac{x^4-x^2+1}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\right)\cdot\left(\dfrac{x^2\left(x^4+x^2+1\right)}{x^4+x^2+1}-\dfrac{x^4+x^2-1}{x^4+x^2+1}\right)\)

\(=\dfrac{x^4-1+2-x^4+x^2-1}{\left(x^2+1\right)\cdot\left(x^4-x^2+1\right)}\cdot\dfrac{x^6+x^4+x^2-x^4-x^2+1}{x^4+x^2+1}\)

\(=\dfrac{x^2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\cdot\dfrac{x^6+1}{x^4+x^2+1}\)

\(=\dfrac{x^2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\cdot\dfrac{\left(x^2+1\right)\left(x^4-x^2+1\right)}{x^4+x^2+1}\)

\(=\dfrac{x^2}{x^4+x^2+1}\)

Aquarius
Xem chi tiết
Đinh Đức Hùng
15 tháng 10 2017 lúc 19:53

\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)

ĐKXĐ : \(x\ne0\) 

Ta có \(pt\Leftrightarrow8\left(x^2+\frac{1}{x^2}+2\right)+4\left(x^2+\frac{1}{x}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}+2\right)=\left(x+4\right)^2\)

Đặt \(x^2+\frac{1}{x^2}=a\) thay vào pt trên ta có :

\(pt\Leftrightarrow8\left(a+2\right)+4a^2-4.a.\left(a+2\right)=\left(x+4\right)^2\)

\(\Leftrightarrow8a+16+4a^2-4a^2-8a=\left(x+4\right)^2\)

\(\Leftrightarrow\left(x+4\right)^2=16\Leftrightarrow\orbr{\begin{cases}x+4=4\\x+4=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=0\left(KTMĐKXĐ\right)\\x=-8\left(TMĐKXĐ\right)\end{cases}}}\)

Vậy \(x=-8\)

\(\)

trinh viet nam
15 tháng 10 2017 lúc 20:17

ko biet vua chia tay nen ko tra loi dc huhu em oi