cho a = (x+1)/x , b = (y+1)/y , c =( xy+1)/xy
tìm hệ thức liên hệ giữa a,b,c
cho a = (x+1)/x , b = (y+1)/y , c =( xy+1)/xy
tìm hệ thức liên hệ giữa a,b,c
cho A ( 0,-5) B( 1; -3) và C ( x;y) tìm hệ thức liên hệ giữa x và y để b,c thẳng hàng
\(\overrightarrow{AB}=\left(1;2\right)\)
\(\overrightarrow{AC}=\left(x;y+5\right)\)
Để A,B,C thẳng hàng thì x/1=y+5/2
=>2x=y+5
=>y=2x-5
cho \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) và\(a+b+c=a^2+b^2+c^2=1\)tìm hệ thức liên hệ giữa x,y,z không phụ thuộc vào a,b.c
cho hệ phương trình \(\hept{\begin{cases}mx+y=1\\x+my=1\end{cases}}\)
a, giải hệ pt theo tham số m
b, tìm m để hệ pt có nghiệm x,y thỏa mãn x-y=1
c, tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m
Cho phương trình : \(\left\{{}\begin{matrix}\left(m-1\right)x+y=m\left(1\right)\\x+\left(m-1\right)y=2\left(2\right)\end{matrix}\right.\) có nghiệm duy nhất (x;y)
a) Giải hệ phương trình khi m=3
b) Tìm hệ thức liên hệ giữa x và y ko phụ thuộc vào m
c) Trong trường hợp hệ có nghiệm duy nhất tìm giá trị của m thỏa mãn : 2x2 - 7y = 1
d) Tìm các giá trị của m để biểu thức \(\dfrac{2x-3y}{x+y}\) nhận giá trị nguyên
Cho hệ phương trình \(\begin{cases} mx + y =1\\ x +my = 2 \end{cases} \)
a. Giải hệ phương trình khi m = 2
b. Giải và biện luận hệ phương trình theo tham số m
c. Tìm m để hệ phương trình có nghiệm (x;y) thỏa mãn x - y = 1
d. Tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m
Cho hệ phương trình:mx+y=1
x+my=2
a) Giải hệ phương trình khi m = 2
b) Giải hệ phương trình theo tham số m
c) Tìm m để hệ phương trình có nghiệm (x; y) thoả mãn x - y = 1
d) Tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m.
a/tính đa thức C=2x2y-xy2+3y2tại |x|=1,|y|=2
b/cho đa thức A(x)=ax2+bx+c (a,b,c là hệ số, x là biến).tìm a,b,c biết A(0)=4,A(1)=9,A(2)=14.
+ A ( x ) = ax2 + bx + c
=> A(0) = a . 02 + b.0 + c = c mà A(0) = 4 => c = 4
+ A ( x ) = ax2 + bx + c
=> A ( 1 ) = a . 12 + b.1 + c = a + b + c hay A ( 1 ) = a + b + 4 mà A(1) = 9 => a + b = 5
+ A ( x ) = ax2 + bx + c
=> A ( 2 ) = a . 22 + b . 2 + c = 4a + 2b + c hay A ( 2 ) = 4a + 2b + 4 mà A ( 2 ) = 14 => 4a + 2b = 10
4a + 2b = 2a + 2a + 2b = 2a + 10 mà 4a + 2b = 10 => 2a + 10 = 14 => a = 2 => b = 5 - 2 = 3