\(\overrightarrow{AB}=\left(1;2\right)\)
\(\overrightarrow{AC}=\left(x;y+5\right)\)
Để A,B,C thẳng hàng thì x/1=y+5/2
=>2x=y+5
=>y=2x-5
\(\overrightarrow{AB}=\left(1;2\right)\)
\(\overrightarrow{AC}=\left(x;y+5\right)\)
Để A,B,C thẳng hàng thì x/1=y+5/2
=>2x=y+5
=>y=2x-5
Cho ba điểm A( -4; 1) ; B( 2; -7) và C( 5; -6) và đường thẳng d: 3x+ y+ 11=0 .Quan hệ giữa d và tam giác ABC là:
A. đường cao vẽ từ A
B. đường cao vẽ từ B.
C. trung tuyến vẽ từ A.
D. phân giác góc BAC
Cho hệ phương trình: m x + 3 m − 2 y + m − 3 = 0 2 x + m + 1 y − 4 = 0 . Hệ thức liên hệ giữa x và y độc lập đối với tham số m khi hệ phương trình có nghiệm duy nhất là:
A. x = − 1 + 15 6 y
B. y = − 1 − 15 6 x
C. x = − 1 − 15 6 y
D. y = − 1 + 15 6 x
Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có AB :2x -y + 1 = 0, AC : x -y + 1 = 0 và M là trung điểm của CD thuộc đường thẳng 2x + y + 1 = 0 . Tìm tọa độ các đỉnh A, B, C, D
a. Xét dấu của biểu thức f(x) = 2x(x+2)-(x+2)(x+1)
b. Lập bảng biến thiên và vẽ trong cùng một hệ tọa độ vuông góc đồ thị của các hàm số : y = 2x(x+2) ( C1 ) và y = (x+2)(x+1)(C2)
Tính tọa độ giao điểm A và B của (C1) và (C2).
c. Tính các hệ số a, b, c để hàm số y = ax2 + bx + c có giá trị lớn nhất bằng 8 và độ thị của nó đi qua A và B.
Cho các điểm A(2; 3), B(9; 4), M(5; y) và P(x; 2).
a, Tìm y để tam giác AMB vuông tại M;
b, Tìm x để ba điểm A, B và P thẳng hàng.
Cho hai điểm A, B thỏa mãn hệ phương trình x A + y A − 1 = 0 x B + y B − 1 = 0 . Tìm m để đường thẳng AB cắt đường thẳng y = x + m tại điểm C có tọa độ thỏa mãn y C = x C 2
A. m = 2
B. m = 1
C. m = 0
D. m = 2 ± 5
+) Giải hệ pt: \(\left\{{}\begin{matrix}4\sqrt{x^2+4y-5}=y^2-x+10\\x^3+\left(1-y\right)x^2=\left(x+4\right)y\end{matrix}\right.\)
+) Cho a,b,c>0 và a+b+c=2017
CM: \(\dfrac{2017a-a^2}{bc}+\dfrac{2017b-b^2}{ca}+\dfrac{2017c-c^2}{ab}\ge\sqrt{2}\left(\Sigma\sqrt{\dfrac{2017-a}{a}}\right)\)
Cho hệ phương trình: m − 1 x + y = 3 m − 4 x + m − 1 y = m . Hệ thức liên hệ giữa x và y độc lập đối với tham số m khi hệ có nghiệm duy nhất là:
A. y = x – 2
B. y = x + 2
C. y = −x – 2
D. y = −x + 2
Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d: x-y-6 = 0 và hai điểm A (6;4), B (4;0). Viết phương trình đường tròn (C) có tâm thuộc d và đi qua hai điểm A,B