tính
1.2+2.3+...+99.100
10.4. Tính tổng
a) \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
b) \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\)
c) \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) +...........\(\dfrac{1}{99.100}\)
d) \(\dfrac{3}{1.2}\) + \(\dfrac{3}{2.3}\) +.........\(\dfrac{1}{99.100}\)
giúp em
a)
`1/1-1/2`
`=2/2-1/2`
`=1/2`
b)
`1/(1*2)+1/(2*3)`
`=1/1-1/2+1/2-1/3`
`=1/1-1/3`
`=3/3-1/3`
`=2/3`
c)
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{1}-\dfrac{1}{100}\\ =\dfrac{99}{100}\)
d)
\(\dfrac{3}{1\cdot2}+\dfrac{3}{2\cdot3}+...+\dfrac{3}{99\cdot100}\) đề phải như thế này chứ nhỉ?
\(=\dfrac{1\cdot3}{1\cdot2}+\dfrac{1\cdot3}{2\cdot3}+...+\dfrac{1\cdot3}{99\cdot100}\\ =3\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\\ =3\cdot\dfrac{99}{100}\\ =\dfrac{297}{100}\)
Tính tổng: M=1.2+2.3+....+48.49 N=1+2+...+48 A=1.2+2.3+...+99.100 Cảm ơn
b: Tổng của N là:
\(\dfrac{49\cdot48}{2}=49\cdot24=1176\)
a) \(3M=1.2.3+2.3.3+...+48.49.3=1.2.3+2.3.\left(4-1\right)+...+48.49.\left(50-47\right)=1.2.3+2.3.4-1.2.3+...+48.49.50-47.48.49=48.49.50\Rightarrow M=\dfrac{48.49.50}{3}\Rightarrow M=39200\)
b) Tương tự câu a
Tính:
B = 1.2 + 2.3 + 3.4 + ... + 99.100
Tính tổng S = 1.2 + 2.3+.....+99.100
Program i: integer;
s: longint;
Begin
s:=0;
for i:=1 to 99 do s:=s + i*(i+1);
write('S=',s);
readln
end.
uses crt;
var i,s:longint;
begin
clrscr;
s:=0;
for i:=1 to 99 do
s:=s+i*(i+1);
writeln('S=',s);
readln;
end.
A=1.2+2.3+...+99.100
tính tổng
Tk:
Đặt P = 1.2+2.3+3.4+...+99.100
3P = 1.2.3+2.3.3+3.4.3+...+99.100+3
3P = 1.2 (3-0) +2.3(4-1)+3.4(5-2) +...+ 99.100( 101-98)
3P = ( 1.2.3 + 2.3.4 + 3.4.5 + 99.100.101 ) -( 0.1.2 + 1.2.3 + 2.3.4 + ....+ 98.99.100)
3P = 99.100.101 - 0.1.2
3P = 999900 - 0
3P = 999900
P = 999900 : 3
P = 333300
\(A=1.2+2.3+3.4+...+99.100\)
\(\Rightarrow3A=1.2.3+2.3.3+...+99.100.3\)
\(=1.2.3+2.3.\left(4-1\right)+3.4\left(5-2\right)+...+99.100\left(101-98\right)\)
\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-....-98.99.100+99.100.101\)
\(=99.100.101\)
\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)
tính : 1.2 + 2.3 + ....+ 99.100
Tính : 1.2+2.3+3.4+...+99.100
Tính 1.2 + 2.3 + 3.4 + .... + 99.100
Gọi A là biểu thức ta có:
A = 1.2+2.3+3.4+......+99.100
Gấp A lên 3 lần ta có:
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
A . 3 = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300
Đặt biểu thức là A ta có:
A=1.2+2.3+3.4+...+99.100 (1)
Nhân 2 vế của đẳng thức (1) với 3 ta được:
3A=3.(1.2+2.3+3.4+4.5+...+99.100)
3A=1.2.3+2.3.3+3.3.4+4.5.3+...+99.100.3
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+99.100.(101-98)
3A=1.2.3+2.3.4-2.3.1+3.4.5-2.3.4+4.5.6-4.5.3+...+99.100.101-99.100.98
3A=99.100.101
3A=999900
A=999900:3=333300
tính 1.2+2.3+3.4+...+99.100
1.2+2.3+3.4+...+99.100
=(99.100.101-0.1.2):3=333300
Tính 1.2+2.3+3.4+...+99.100
A = 1.2+2.3+3.4+......+99.100
Gấp A lên 3 lần ta có:
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
A . 3 = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300
Đặt A = 1.2 + 2.3 + 3.4 + ...+99.100
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
=> 3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ... + 99.100.(101-98)
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + 4.5.6 - 3.4.5 + ... + 99.100.101-98.99.100
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 - 3.4.5 + ... + 99.100.101
=> 3A = 99.100.101
=> 3A = 999900
=> A = 999900 : 3
=> A = 333300
Vậy A = 333300