Tìm n thuộc Z biết 2n+3 chia hết cho 3n+2
1 tìm n thuộc z biết
a, 7 chia hết n-2
2 tìm n thuộc z biết
a, 2n+5 chia hết cho n-1
b, n+3 chia hết cho 2n -1
3 tìm n thuộc z biết
a, 2n-5 chia hết cho n+1 và n+1 chia hết cho 2n+5
b, 3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
1. tìm n thuộc Z biết :
a, 7 chia hết cho n+2
b, n-2 là ước của -5
c, -10 là bội 2n-1
2.tìm n thuộc Z biết:
2n-5 chia hết cho n+1 và n+1 chia hết cho 2n-5
3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
Tìm n thuộc Z biết:
a) -2n +3 chia hết cho n - 1
b) 3n + 2 chia hết cho 2n - 3
a\ -2.[n-1]+5 chia het chon n-1
vi -2.[n-1] chia het cho n-1 nen 5 chia het cho n-1
vay n-1 thuoc uoc cua 5 thuoc -1;1;-5;5
thay n-1 vao tung uoc cua 5
b\vi 3n+2 chia het cho 2n-3 nen 2[3n+2] cung chia het cho 2n-3
=6n+4 chia het cho 2n-3
3.[2n-3]+13 chia het cho 2n-3
vi 3[2n-3] chia het cho 2n-3 nen 13 cung chia het cho 2n -3
thay 2n-3 vao tung uoc cua 13 de tim ra n
oke
Tìm n thuộc Z biết:
a) -2n +3 chia hết cho n - 1
b) 3n + 2 chia hết cho 2n - 3
a)-2n+3 chia hết cho n-1
\(\Rightarrow\)(-2n+3)--2(n-1)chia hết cho n-1
\(\Rightarrow\)(-2n+3)+2(n-1)chia hết cho n-1
\(\Rightarrow\)-2n+3+2n-2chia hết cho n-1
\(\Rightarrow\)(-2n+2n)+(3-2)chia hết cho n-1
\(\Rightarrow\)1 chia hết cho n-1
từ đây tự tính
b)3n+2 chia hết cho 2n-3
\(\Rightarrow\)2(3n+2)-3(2n-3) chia hết cho 2n-3
\(\Rightarrow\)(6n+4)-(6n-9) chia hết cho 2n-3
\(\Rightarrow\)6n+4-6n+9 chia hết cho 2n-3
\(\Rightarrow\)13 chia hết cho 2n -3
sau đó lập bảng ra
kq:n=2:n=1:n=8:n=-5
1. Tìm n thuộc Z để giá trị của biểu thức A= n^3 + 2n^2 - 3n + 2 chia hết cho giá trị của biểu thức B= n^2 - n
2.a. Tìm n thuộc N để n^5 + 1 chia hết cho n^3 + 1
b. Giải bài toán trên nếu n thuộc Z
3. Tìm số nguyên n sao cho:
a. n^2 + 2n - 4 chia hết cho 11
b. 2n^3 + n^2 + 7n + 1 chia hết cho 2n - 1
c.n^4 - 2n^3 + 2n^2 - 2n + 1 chia hết cho n^4 - 1
d. n^3 - n^2 + 2n + 7 chia hết cho n^2 + 1
4. Tìm số nguyên n để:
a. n^3 - 2 chia hết cho n - 2
b. n^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n + 1
c. 5^n - 2^n chia hết cho 63
Tìm n thuộc Z biết :
a)n+7 chia hết cho n+2
b) 3n+7 chia hết cho 2n+1
c)n^2+25 chia hết cho n+2
d)3n^2+5 chia hết cho n-1
e)2n^2+11 chia hết cho 3n+1
\(a)n+7⋮n+2\)
\(\Rightarrow n+2+5⋮n+2\)
Mà n + 2 chia hết cho n + 2 => \(5⋮n+2\)=> n + 2 thuộc Ư\((5)\)\(=\left\{\pm1;\pm5\right\}\)
Lập bảng :
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
Vậy : ...
Tìm n thuộc Z biết :
a , 2n+1 chia hết cho 2n-3
b , 3n+2 chia hết cho 3n-4
Trả lời nhanh giúp mik nhé . Cảm ơn các pn nhiều!!!
hơi dài đấy 3
a,
2n+1\(⋮\)2n-3
2n-3+4\(⋮\)2n-3
\(_{\Rightarrow}\)4\(⋮\)2n-3
2n-3\(\in\)Ư(4)=(1;4;2;-1;-4;-2)
2n-3 | 1 | 2 | 4 | -1 | -2 | -4 |
2n | 4 | 5 | 7 | 2 | 1 | -1 |
n | 2 | 1 |
vậy n\(\in\)(2;1)
b;
3n+2\(⋮\)3n-4
3n-4+6\(⋮\)3n-4
=>6\(⋮\)3n-4
3n-4\(\in\)Ư(6)=(1;2;3;6;-1;-2;-3;-6)
3n-4 | 1 | 2 | 3 | 6 | -1 | -2 | -3 | -6 |
3n | 5 | 6 | 7 | 10 | 3 | 2 | 1 | -2 |
n | 3 | 5 | 1 | -1 |
vậy n\(\in\)(3;5;-1;1)
tìm n thuộc z biết
a, 3n+5 chia hết cho 2n+1
b, 3n+1 chia hết cho 2n-1
a) Theo bài ra ta có : 3n + 5 chia hết cho 2n + 1 => 2(3n + 5) chia hết cho 3(2n + 1)
=> 2(3n + 5) - 3(2n + 1) chia hết cho 2n + 1
=> 6n + 10 - 6n - 3 chia hết cho 2n + 1
=>7 chia hết cho 2n + 1
=> 2n +1 thuộc Ư(7)={1;7}
Ta có : 2n + 1 = 1 => n = 0
2n + 1 = 7 => n = 3
Vậy n= 0 hoặc n= 3
b) Theo bài ra ta có : 3n +1 chia hết cho 2n - 1 => 2(3n +1) chia hết cho 3(2n - 1)
=> 3(2n - 1) - 2(3n +1) chia hết cho 2n -1
=> 6n - 3 - 6n -2 chia hết cho 2n -1
=> 1 chia hết cho 2n - 1
=> 2n - 1 = 1
Ta có : 2n - 1 = 1 => n = 1
Vậy n = 1
=>
Gọi d là 2 số 3n+5 và 2n+1
Vì d là ƯC(3n+5, 2n+1)
Nện : 3n+5 chia hết cho d => 2.(3n+5) chia hết cho d
2n+1 chia hết cho d => 3.(2n+1) chia hết cho d
=> 2.(3n+5) - 3.(2n+1) chia hết cho d
=> 10 - 3 chia hết cho d
=> 7 chia hết cho d
=> d là ƯC{7}
=>d = {1;7}
Kết luận: n=1 hoặc n=7
Tìm n thuộc Z biết
4n+3 chia hết cho 3n-2
2n+3 chia hết chon-1
n^2+5n-1 chia hết cho n-3
n^2 -5 chia hết cho n+4
2) Tìm x,y thuộc Z
xy+2y-3x=11
4x-xy+2y+3=0
4n+3 chia hết cho 3n-2
<=> 3(4n+3)-4(3n-2) chia hết cho 3n-2
<=>17 chia hết cho 3n-2
<=>3n-2 E {-1;1;17;-17}
<=> 3n E {1;3;19;-15} loại các TH n ko nguyên
=>n E {1;-5}. Vậy.....
2n+3 chia hết cho n-1
<=> 2n+3-2(n-1) chia hết cho n-1
<=>5 chia hết cho n-1
<=> n-1 E {-1;1;5;-5}
<=> n E {0;2;6;-4}
bài nào chứ mấy bài này dài ngoằng =((
Vì vai trò m, n như nhau, giả sử m≥n
Xét các trường hợp:
Nếu m=n thì 2m+1⋮m⇒m=n=1 Nếu m>n, đặt 2n+1=pm (p∈N∗)Vì 2m>2n⇒2m>2n+1=pm⇒p<2⇒p=1
Khi p=1 thì: 2n+1=m⇒2(2n+1)+1=2m+1⋮n⇒4n+3⋮n⇒3⋮n⇒n=1;3
Với n=1 thì m=3
Với n=3 thì m=7
Vậy (m;n)={(1;1); (3;1); (7;3)}