Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tran huynh trieu man
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 3 2022 lúc 7:44

a: Xét ΔABM và ΔCDM có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

DO đó; ΔABM=ΔCDM

b: Xét tứ giác ABCD có 

M là trung điểm của AC
M là trung điểm của BD

Do đó:ABCD là hình bình hành

Suy ra: AB//CD

trần huỳnh triệu mẫn
Xem chi tiết
vân nguyễn
Xem chi tiết
Bùi Võ Đức Trọng
16 tháng 7 2021 lúc 9:19

undefinedundefined

Bùi Võ Đức Trọng
16 tháng 7 2021 lúc 9:23

Câu C bạn cm AFCE là hình chữ nhật , FE là đường chéo => E,F,M thẳng hàng vì 2 đường chéo hình chữ nhật đi qua trung điểm của mỗi đường.

 

Huỳnh Đinh Thúy Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 2 2021 lúc 21:42

a)

Sửa đề: Chứng minh ΔMAB=ΔMCD và \(\widehat{MCD}=90^0\)

Xét ΔMAB và ΔMCD có 

MA=MC(M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

MB=MD(gt)

Do đó: ΔMAB=ΔMCD(c-g-c)

Suy ra: \(\widehat{MAB}=\widehat{MCD}\)(hai góc tương ứng)

mà \(\widehat{MAB}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{MCD}=90^0\)(đpcm)

b) Xét ΔDMA và ΔBMC có 

DM=BM(gt)

\(\widehat{DMA}=\widehat{BMC}\)(hai góc đối đỉnh)

MA=MC(M là trung điểm của AC)

Do đó: ΔDMA=ΔBMC(c-g-c)

Suy ra: \(\widehat{ADM}=\widehat{CBM}\)(hai góc tương ứng)

mà \(\widehat{ADM}\) và \(\widehat{CBM}\) là hai góc ở vị trí so le trong

nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)

c)

Ta có: MB=MD(gt)

mà D,M,B thẳng hàng(gt)

nên M là trung điểm của BD

Xét ΔMAB vuông tại A và ΔMAK vuông tại A có

MA chung

AB=AK(gt)

Do đó: ΔMAB=ΔMAK(hai cạnh góc vuông)

Suy ra: MB=MK(hai cạnh tương ứng)

mà \(BD=2\cdot MB\)(M là trung điểm của BD)

nên \(BD=2\cdot MK\)(đpcm)

Pii Nguyễn
Xem chi tiết
Hoàng Thị Ngọc Anh
20 tháng 12 2016 lúc 19:43

cần giải bài này nữa ko Pii Nguyễn

ice bear_chan cute
Xem chi tiết
Kim Ji Min
Xem chi tiết
hoàng thị huyền trang
9 tháng 1 2018 lúc 10:41

a) xét tam giác AMD và tam giác CMB có :

AM = CM ( vì Mlaf trung điểm của AC)

\(\widehat{AMD}=\widehat{CMB}\)(đối đỉnh)

MD = MB (gt)

=> tam giác AMD = tam giác CMB (c-g-c)

xét tam giác ANE và tam giác BNC có :

AN = BN ( vì N là trung điểm của AB)

\(\widehat{ANE}=\widehat{BNC}\)(đối đỉnh)

NE = CN (gt)

=> tam giác ANE = tam giác BNC (c-g-c)

b) vì tam giác AMD = tam giác CMB (cmt) => AD = BC (2 cạnh tương ứng)(1)

vì tam giác ANE = tam giác BNC (cmt) => AE = BC ( 2 cạnh tương ứng) (2)

từ (1), (2) => AD = AE (đpcm)

c) Vì tam giác AMD = tam giác CMB (cmt) => \(\widehat{MAD}=\widehat{MCB}\)(2 góc tương ứng)

mà \(\widehat{MAD}\)và \(\widehat{MCB}\)ở vị trí so le trong

do đó AD // BC (3)

Vì tam giác ANE = tam giác BNC (cmt) => \(\widehat{NAE}=\widehat{NBC}\)(2 góc tương ứng)

mà \(\widehat{NAE}\)và  \(\widehat{NBC}\) ở vị trí so le trong

do đó AE // BC (4)

từ (3), (4) => A, E, D thẳng hàng (đpcm) 

Nàng tiên cá
Xem chi tiết
gia huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 4 2023 lúc 23:58

a: Xét ΔABM và ΔCDM có

MA=MC

góc AMB=góc CMD

MB=MD

=>ΔABM=ΔCDM

b: Xét ΔAMD và ΔCMB có

MA=MC

góc AMD=góc CMB

MD=MB

=>ΔAMD=ΔCMB

c: Xét ΔABC và ΔCDA có

AB=CD

BC=DA

AC chung

=>ΔABC=ΔCDA