Cho tam giác abc, m là trung điểm của cạnh ac. Trên tia đối của tia mb lấy điểm d sao cho md=mb.
Chứng minh rằng
a) tam giác mab = tam giácmcd
b) bm<ac+bc/2
Cho tam giác ABC, M là trung điểm cạnh AC. Trên tia đối của tia MB lấy điểm D sao MD=MB.
a) Chứng minh : tam giác ABM= COM.
b) Chứng minh : AB//CD.
c) Trên tia đối của tia BA lấy điểm E.
d) Sao cho BE= AB.
Chứng minh rằng BM= FC/2
a: Xét ΔABM và ΔCDM có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
DO đó; ΔABM=ΔCDM
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó:ABCD là hình bình hành
Suy ra: AB//CD
Cho tam giác ABC, M là trung điểm cạnh AC. Trên tia đối của tia MB lấy điểm D sao MD=MB.
a) Chứng minh : tam giác ABM = COM.
b) Chứng minh : AB//CD.
c) Trên tia đối của tia BA lấy điểm E.
d) Sao cho BE = AB.
Chứng minh rằng BM = FC/2
Cho tam giác ABC nhọn, M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MD = MB. Chứng minh:
a) tam giác MAB = tam giác MCD và AB // CD
b) góc ABC = góc CDA
c) Kẻ CE vuông góc với AD tại E. Gọi F là điểm trên cạnh BC sao cho BF = DE. Chứng minh À vuông góc với BC và 3 điểm F, M, E thẳng hàng
Câu C bạn cm AFCE là hình chữ nhật , FE là đường chéo => E,F,M thẳng hàng vì 2 đường chéo hình chữ nhật đi qua trung điểm của mỗi đường.
giúp mình câu c nhé ! mình cảm ơn
Cho tam giác ABC vuông tại A (AB<AC). Gọi M là trung điểm của AC .Trên tia BM lấy điểm D sao cho MB=MD a. Chứng minh tam giác MAB =tam giác MDC từ đó suy ra MDC= 90 độ b.Chứng minh BC// AD C. Trên tia đối của AB lấy K sao cho AB=AK .Chứng minh BD =2MK
a)
Sửa đề: Chứng minh ΔMAB=ΔMCD và \(\widehat{MCD}=90^0\)
Xét ΔMAB và ΔMCD có
MA=MC(M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)
MB=MD(gt)
Do đó: ΔMAB=ΔMCD(c-g-c)
Suy ra: \(\widehat{MAB}=\widehat{MCD}\)(hai góc tương ứng)
mà \(\widehat{MAB}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{MCD}=90^0\)(đpcm)
b) Xét ΔDMA và ΔBMC có
DM=BM(gt)
\(\widehat{DMA}=\widehat{BMC}\)(hai góc đối đỉnh)
MA=MC(M là trung điểm của AC)
Do đó: ΔDMA=ΔBMC(c-g-c)
Suy ra: \(\widehat{ADM}=\widehat{CBM}\)(hai góc tương ứng)
mà \(\widehat{ADM}\) và \(\widehat{CBM}\) là hai góc ở vị trí so le trong
nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)
c)
Ta có: MB=MD(gt)
mà D,M,B thẳng hàng(gt)
nên M là trung điểm của BD
Xét ΔMAB vuông tại A và ΔMAK vuông tại A có
MA chung
AB=AK(gt)
Do đó: ΔMAB=ΔMAK(hai cạnh góc vuông)
Suy ra: MB=MK(hai cạnh tương ứng)
mà \(BD=2\cdot MB\)(M là trung điểm của BD)
nên \(BD=2\cdot MK\)(đpcm)
(Bài này vẽ hình dùm mình) Cho tam giác ABC, M là trung điểm cạnh AC. Trên tia đối của tia MB lấy điểm D sao cho MD=MB
a) Chứng minh tam giác ABM= tam giác CEM
b) Chứng minh AB//CD
c) Trên tia đối của tia BA lấy điểm E
d) Sao cho BE=AB
_Chứng mình rằng BM=EC/2
cần giải bài này nữa ko Pii Nguyễn
Cho tam giác ABC vuông tại A ( AB < AC ) , BM là đường trung tuyến của tam giác ABC. Trên tia đối của tia MB lấy điểm D sao cho MD = MB.
a) Chứng minh AB = CD, AB // CD
b)Chứng minh BA + BC > 2.BM
c) Trên đoạn thẳng BM lấy điểm N sao cho NM = BM/3 . Gọi K là giao điểm của AN và BC; I là giao điểm của DK và AC . Chứng minh AC = 3. CI
cho tam giác ABC. M là trung điểm cạnh AC, N là trung điểm cạnh AB. trên tia đối của tia MB lấy điểm D sao cho BM= MD. Trên tia đối của tia NC lấy điểm E sao cho CN=NE. chứng minh:
a) tam giác AMD=tam giac CMB và tam giác ANE= tam giâc BNC
b) AD=AE
c) ba điểm A,D,E thẳng hàng
a) xét tam giác AMD và tam giác CMB có :
AM = CM ( vì Mlaf trung điểm của AC)
\(\widehat{AMD}=\widehat{CMB}\)(đối đỉnh)
MD = MB (gt)
=> tam giác AMD = tam giác CMB (c-g-c)
xét tam giác ANE và tam giác BNC có :
AN = BN ( vì N là trung điểm của AB)
\(\widehat{ANE}=\widehat{BNC}\)(đối đỉnh)
NE = CN (gt)
=> tam giác ANE = tam giác BNC (c-g-c)
b) vì tam giác AMD = tam giác CMB (cmt) => AD = BC (2 cạnh tương ứng)(1)
vì tam giác ANE = tam giác BNC (cmt) => AE = BC ( 2 cạnh tương ứng) (2)
từ (1), (2) => AD = AE (đpcm)
c) Vì tam giác AMD = tam giác CMB (cmt) => \(\widehat{MAD}=\widehat{MCB}\)(2 góc tương ứng)
mà \(\widehat{MAD}\)và \(\widehat{MCB}\)ở vị trí so le trong
do đó AD // BC (3)
Vì tam giác ANE = tam giác BNC (cmt) => \(\widehat{NAE}=\widehat{NBC}\)(2 góc tương ứng)
mà \(\widehat{NAE}\)và \(\widehat{NBC}\) ở vị trí so le trong
do đó AE // BC (4)
từ (3), (4) => A, E, D thẳng hàng (đpcm)
Cho tam giác ABC. M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho BM = MD.
a) Chứng minh: Tam giác ABM = Tam giác CDM
b) Chứng minh: AB // CD
c) Trên tia đối của tia CD lấy điểm N sao cho CD = CN
Chứng minh: BN // AC
Cho tam giác ABC. Lấy M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD.
a. Chứng minh tam giác ABM = tam giác CDM
b. Chứng minh tam giac AMD = tam giác CMB
c. Chứng minh tam giác ABC = tam giác CDA
a: Xét ΔABM và ΔCDM có
MA=MC
góc AMB=góc CMD
MB=MD
=>ΔABM=ΔCDM
b: Xét ΔAMD và ΔCMB có
MA=MC
góc AMD=góc CMB
MD=MB
=>ΔAMD=ΔCMB
c: Xét ΔABC và ΔCDA có
AB=CD
BC=DA
AC chung
=>ΔABC=ΔCDA