Cho a là số nguyên. Tìm ƯCLN (2a + 3 ; 3a + 4)
Giúp tui nha! Mai nộp bài rồi
Bài 1: Cho ƯCLN(a,b) =1( a,b€n). Chứng minh rằng:
A) ƯCLN(a+b, ab) = 1
B) ƯCLN(2a+b,a (a+b) = 1
C) Tìm ƯCLN (a+b, a-b)
Bài2: 1) Biết rằng 5n+6 và 8n+7 là 2 số nguyên tố cùng nhau. Tìm ƯCLN(13n+13; 3n+1)
1. Cho a thuộc N, tìm ƯCLN của:
a) 2a+3 và a+7
b)9a+24 và 3a+4
c) 4a+3 và 2a+3
2. Cho 1 số tự nhiên chia 7 dư 5, chia 13 dư 4. Hỏi số đó chia 91 dư bao nhiêu ?
3. Tìm p nguyên tố để: 4 x p^2 + 1 và 6 x p^2 + 1 nguyên tố
Cứ nhân lên r trừ đi
bài 2 trên olm có
bài 3 cô đã dạy
tìm ƯCLN của 2a+3 và 3a+5 với a là số tự nhiên
1) Tìm a,b \(\in N\), biết:
a, BCNN(a,b) - ƯCLN(a,b)=5
b, BCNN(a,b) + ƯCLN(a,b)=42
c, a=2b=48 và ƯCLN + 3.BCNN(a,b)=114
2) Tìm 3 số lẻ liên tiếp đồng thời là 3 số nguyên tố
3) Tìm tất cả các số nguyên tố p vừa là tổng, vừa là hiệu của 2 số nguyên tố
4) Tìm số nguyên tố có 2 chữ số khác nhau dạng \(\overline{ab}\) sao cho \(\overline{ba}\) cũng là số nguyên tố và hiệu \(\overline{ab}-\overline{ba}\) cũng là 1 số nguyên tố
5) Chứng tỏ rằng: nếu ƯCLN(a,b)=1 thì 8a+3 và 5b+1 là số nguyên tố cùng nhau
giúp mk vs
sáng mai mk nộp rồi
ai nhanh mk tik
nguyen van viet
1+1=2
đúng đó
ĐS:2
học tốt!!!
1)Tìm a và b biết: ƯCLN(a,b) + BCNN(a,b) =42
2) tìm số nguyên tố p, sao cho p+2 vafp+4 cùng là 2 số nguyên tố
3) Cho p và p+4 là các số nguyên tố (p>3). CMR p+8 là hợp số
1) Tìm số tự nhiên a,b biết: BCNN của a, b= 300 : ƯCLN của a,b= 15 vfa a+15=b
2) Tìm số nguyên n sao cho (n^2+3) chia hết cho (n+1)
3) Tìm số nguyên tố n sao cho 3p+7 là số nguyên tố
a)
a,b là ước của 6 thì \(\left\{{}\begin{matrix}a=6n\\b=6m\end{matrix}\right.\left(n,m\in N\right)\)
\(a.b=360\Leftrightarrow6n.6m=360\Leftrightarrow n.m=10=2.5\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}n=2\\m=5\end{matrix}\right.\\\left\{{}\begin{matrix}n=5\\m=2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=2\Rightarrow a=12\\n=5\Rightarrow a=30\end{matrix}\right.\)
Tìm số nguyên a sao cho:
a, 3/2a-5 là sôa nguyên
b, 3/7-3a là số tự nhiên
a) Để \(\frac{3}{2a-5}\in Z\)=) \(3⋮2a-5\)=) \(2a-5\inƯ\left(3\right)=\left\{-1,1,-3,3\right\}\)
=) \(2a=\left\{4,6,2,8\right\}\)
=) \(a=\left\{2,3,1,4\right\}\)
Vậy \(a=\left\{2,3,1,4\right\}\)thì \(\frac{3}{2a-5}\in Z\)
b) Để \(\frac{3}{7-3a}\in N\)=) \(3⋮7-3a\)=) \(7-3a\inƯ\left(3\right)=\left\{1,-1,3,-3\right\}\)
=) \(3a=\left\{6,8,4,10\right\}\)=) \(a=\left\{2\right\}\)( Vì \(a\in Z\))
Vậy \(a=\left\{2\right\}\)thì \(\frac{3}{7-3a}\in N\)
Tìm số nguyên a, sao cho: -4/5<3/a<2/3
Bài 1: Biết rằng 79 và 97 là 2 số nguyên tố. Hãy tìm ƯCLN và BCNN của hai số này.
Bài 2: Biết số 3^a và và 5^2 và 3 mũ 3 có ƯCLN là 3^3. 5^2 và BCNN là 3^4. 5^3. Tìm a và b
Bài 1: Vì mỗi số nguyên tố chỉ có ước là 1 và chính nó mà 79 và 97 là hai số nguyên tố khác nhau nên ƯCLN(79, 97) = 1 và BCNN (79, 97) = 79.97 = 7 663.
Bài 2:
ƯCLN (3a.52; 33.5b). BCNN = (3a.52; 33.5b) = ( 33.53).(34.53)
= (33.34).(52.53) = 33+4.52+3 = 37.55
Tích của 2 số đã cho:(3a.52).(33.5b) = ( 3a.33).(52.5b) = 3a+3.5b+2
Ta có tích của hai số bằng tích của ƯCLN và BCNN của hai số ấy nên:
37.55= 3a+3.5b+2. Do đó: a + 3 = 7 ⇒ a = 7 – 3 = 4
và b + 2 = 5 ⇒ b = 5 -2
Vậy a = 4 và b = 3.