Cho \(a=\dfrac{\pi}{11}\). Tính giá trị của biểu thức: A=sina+sin2a+sin3a+sin4a+sin5a
Don gian bieu thuc sau
a) A= \(\dfrac{1-cosa+cos2a}{sin2a-sina}\) b) B= \(\sqrt{\dfrac{1}{2}-\dfrac{1}{2}\sqrt{\dfrac{1}{2}+\dfrac{1}{2}cosa}}\) (0<a≤\(\pi\)).
c) C= \(\dfrac{cosa-cos3a+cos5a-cos7a}{sina+sin3a+sin5a+sin7a}\)
có A=\(\dfrac{1-cosa+2cos^2a-1}{2sina.cosa-sina}=\dfrac{cosa\left(2cosa-1\right)}{sina\left(2cosa-1\right)}=\dfrac{cosa}{sina}=cota\)
Biểu thức rút gọn của biểu thức \(A=\dfrac{\sin2a+\sin5a-\sin3a}{1+\cos a-2\sin^22a}\) là : ?
\(A=\dfrac{sin2\alpha+sin5\alpha-sin3\alpha}{1+cos\alpha-2sin^22\alpha}\)
\(=\dfrac{2sin\alpha.cos\alpha+2.cos4\alpha.sin\alpha}{cos4\alpha+cos\alpha}\)
\(=\dfrac{2sin\alpha.\left(cos\alpha+cos4\alpha\right)}{cos4\alpha+cos\alpha}=2sin\alpha\)
câu20:Cho tana=-2 và pi/2<a<pi.Tính giá trị biểu thức P=cos2a+sin2a
câu21Cho 2tana-cota=1 và -pi/2<a<0.Tính giá trị của biểu thức P=tana+2cota
câu22: Cho sina=-1/7 và pi<a<3pi/2.Tính giá trị của biểu thức P=cos(a+pi/6)
câu23: Cho sina=-1/9; cosb=-2/3 và pi<a<3pi/2; pi/2<b<pi. Tính giá trị của biểu thức P= sin(a+b)
Rút gọn biểu thức sau:
A=4sinx*cosx*cos2x*cos4x
B=cos^4x -6cos^x*sin^2x+sim^4x
C=\(\frac{\text{cos2a-cos4a}}{sin4a+sin2a}\)
D=\(\frac{\text{cosa+cos3a+cos5a}}{sina+sin3a+sin5a}\)
E=sin^2(\(\frac{\pi}{8}\)+\(\frac{x}{2}\))-sin^2(\(\frac{\pi}{8}\)-\(\frac{x}{2}\))
F=\(\frac{1+cosx+cos2x+cos3x}{2cos^2x+cosx-1}\)
\(A=2sin2x.cos2x.cos4x=sin4x.cos4x=\frac{1}{2}sin8x\)
\(B=sin^4x+cos^6x-6sin^2x.cos^2x\)
\(=\left(sin^2x+cos^2x\right)^2-8sin^2x.cos^2x\)
\(=1-2\left(2sinx.cosx\right)^2=1-2sin^22x=cos4x\)
\(C=\frac{cos2a+1-2cos^22a}{2sin2a.cos2a+sin2a}=\frac{\left(1-cos2a\right)\left(2cos2a+1\right)}{sin2a\left(2cos2a+1\right)}=\frac{1-cos2a}{sin2a}\)
\(=\frac{1-\left(1-2sin^2a\right)}{2sina.cosa}=\frac{2sin^2a}{2sina.cosa}=\frac{sina}{cosa}=tana\)
\(D=\frac{2cos3a.cos2a+cos3a}{2sin3a.cos2a+sin3a}=\frac{cos3a\left(2cos2a+1\right)}{sin3a\left(2cos2a+1\right)}=\frac{cos3a}{sin3a}=cot3a\)
\(E=\frac{1}{2}-\frac{1}{2}cos\left(\frac{\pi}{4}+x\right)-\frac{1}{2}+\frac{1}{2}cos\left(\frac{\pi}{4}+x\right)\)
\(=\frac{1}{2}\left[cos\left(\frac{\pi}{4}+x\right)-cos\left(\frac{\pi}{4}-x\right)\right]=-sin\frac{\pi}{4}.sinx=-\frac{\sqrt{2}}{2}sinx\)
chon sina=\(\dfrac{5}{13}\) với \(\dfrac{\Pi}{2}< a< \Pi\) tính các giá trị lượng giác cosa,sin2a, cos\(a-\dfrac{\Pi}{3}\)
Rút gọn biểu thức
A= sin2a +sin5a- sin3a/1+ cos- 2sin22a
\(A=\frac{sin2a+sin5a-sin3a}{1+cosa-2sin^22a}=\frac{2sina.cosa+2cos4a.sina}{cos4a+cosa}=\frac{2sina\left(cos4a+cosa\right)}{cos4a+cosa}=2sina\)
Rút gọn biểu thức
\(A=\frac{sin2a+sin5a-sin3a}{1+cosa-2sin^22a}\)
\(A=\frac{2sina.cosa+2cos4a.sina}{cos4a+cosa}=\frac{2sina\left(cos4a+cosa\right)}{cos4a+cosa}=2sina\)
Á dụng công thức \(cotx-cot2x=\dfrac{1}{sin2x}\) để rút gọn biểu thức sau
\(S=\dfrac{1}{sina}+\dfrac{1}{sin2a}+\dfrac{1}{sin4a}+\dfrac{1}{sin8a}\)
a. \(\dfrac{sina+sin3a+sin5a}{cosa+cos3a+cos5a}\)= tan3a
b. \(\dfrac{1+cosa}{1-cosa}tan^2\dfrac{a}{2}-cos^2a=sin^2a\)
giúp mk vs ạ
a.
\(\dfrac{sina+sin5a+sin3a}{cosa+cos5a+cos3a}=\dfrac{2sin3a.cosa+sin3a}{2cos3a.cosa+cos3a}=\dfrac{sin3a\left(2cosa+1\right)}{cos3a\left(2cosa+1\right)}=\dfrac{sin3a}{cos3a}=tan3a\)
b.
\(\dfrac{1+cosa}{1-cosa}.\dfrac{sin^2\dfrac{a}{2}}{cos^2\dfrac{a}{1}}-cos^2a=\dfrac{1+cosa}{1-cosa}.\dfrac{\dfrac{1-cosa}{2}}{\dfrac{1+cosa}{2}}-cos^2a\)
\(=\dfrac{1+cosa}{1-cosa}.\dfrac{1-cosa}{1+cosa}-cos^2a=1-cos^2a=sin^2a\)