cho (a-b)^2+(b-c)^2+(c-a)^2+4(ab+bc+ca)=4(a^2+b^2+c^2) cmr:a=b=c
a,cho (a+b+c)^2 =3(ab+ac+bc)
cmr:a=b=c
b,Cho(a-b)^2+(b-c)^2+(c-a)^2 +4(ab+bc+ca)=4(a^2+b^2+c^2)
cmr:a=b=c
a) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
\(a^2+b^2+c^2+2ab+2ac+2bc-3ab-3ac-3bc=0\)
\(a^2+b^2+c^2-ab-ac-bc=0\)
\(2\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
\(\Rightarrow a=b=c\left(đpcm\right)\)
Cho (a-b)2+(b-c)2+(c-a)2+4(ab+bc+ca)=4(a2+b2+c2). CMR:a=b=c
Triển khai vế trái ra, xong chuyển hết sang vế phải ta dc: (a-b)^2+(b-c)^2+(c-a)^2=0
suy ra a-b=0, b-c=0, c-a=0. Vậy a=b=c
Triển khai vế trái ra, xong chuyển hết sang vế phải ta dc: (a-b)^2+(b-c)^2+(c-a)^2=0
suy ra a-b=0, b-c=0, c-a=0. Vậy a=b=c
Cho 3 số a,b,c thỏa mãn a^2 + b^2 + ab +bc +ca <0.Cmr:a^2+b^2<c^2
+) Cho a,b,c>0 tm: abc=1
\(CMR:a^3+b^3+c^3+\dfrac{ab}{a^2+b^2}+\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}\ge\dfrac{9}{2}\)
Đặt vế trái BĐT cần chứng minh là P, ta có:
\(\dfrac{ab}{a^2+b^2}+\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}=\dfrac{1}{c\left(a^2+b^2\right)}+\dfrac{1}{a\left(b^2+c^2\right)}+\dfrac{1}{b\left(c^2+a^2\right)}\)
\(\ge\dfrac{9}{a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)}\ge\dfrac{9}{2\left(a^3+b^3+c^3\right)}\)
\(\Rightarrow P\ge a^3+b^3+c^3+\dfrac{9}{2\left(a^3+b^3+c^3\right)}\ge3\sqrt[3]{\left(\dfrac{a^3+b^3+c^3}{2}\right)^2.\dfrac{9}{2\left(a^3+b^3+c^3\right)}}\)
\(=3\sqrt[3]{\dfrac{9\left(a^3+b^3+c^3\right)}{8}}\ge3\sqrt[3]{\dfrac{27abc}{8}}=\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
cho a,b,c>0 tmdk 1/a+1/b+1/c<=3.cmr:a/1+b^2+b/1+c^2+c/1+a^2+1/2(ab+bc+ca)>+3
cho
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(CMR:a=b=c\)
GIÚP MÌNH CÂU NÀY VỚI MÌNH ĐANG CẦN GẤP LĂM Ấ
Giải:
Ta có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=4a^2+4b^2+4c^2-4ab-4bc-4ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=4a^2+4b^2+4c^2-4ab-4bc-4ac\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=4\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(\Leftrightarrow\left(a^2+b^2+c^2-ab-bc-ca\right)=2\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(\Rightarrowđpcm\)
Ta có:
\(\left(a-b\right)^2\)+\(\left(b-c\right)^2\)+\(\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=4\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=4\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=4\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\Leftrightarrow-2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\)
\(\Leftrightarrow a=b=c\left(đpcm\right)\)
cho a+b+c=0 . CMR a, ( ab+bc+ca)^2 = a^2b^2+b^2c^2+c^2a^2 b, a^4+b^4+c^4=2(ab+bc+ca)^2
a+b+c=0
=> ( a+ b+c ) ^2 =0 ( rồi phân tích chuyển dấu )
=> a^2+ b^2+ c^2 = - ( 2ab+ 2ac+ 2bc)
=> ( a ^2 + b^2 + c^2 ) ^2 = ( 2ab+ 2ac+ 2bc) ^2
. Rồi bạn tách tiếp nghen, bạn có làm được tiếp chứ? Có gì cứ hỏi tớ tiếp nhé
1.Tìm max và Min
\(A=\sqrt{3-x}+\sqrt{x+7}\)
2. Cho \(a^2+b^2+c^2=1\)
\(CMR:a+b+c+ab+bc+ca\text{≤}1+\sqrt{3}\)
1.Tìm max và Min
\(A=\sqrt{3-x}+\sqrt{x+7}\)
2. Cho \(a^2+b^2+c^2=1\)
\(CMR:a+b+c+ab+bc+ca\text{≤}1+\sqrt{3}\)
\(1,\)
Áp dụng BĐT Bunhiacopski:
\(A^2=\left(\sqrt{3-x}+\sqrt{x+7}\right)^2\le\left(1^2+1^2\right)\left(3-x+x+7\right)=2\cdot10=20\)
Dấu \("="\Leftrightarrow3-x=x+7\Leftrightarrow x=-2\)
\(A^2=3-x+x+7+2\sqrt{\left(3-x\right)\left(x+7\right)}\\ A^2=10+2\sqrt{\left(3-x\right)\left(x+7\right)}\ge10\)
Dấu \("="\Leftrightarrow\left(3-x\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-7\end{matrix}\right.\)
CÂU 2 THAM KHẢO:
Chứng minh a+b+c+ab+bc+ac < =1+căn 3 - Phạm Phú Lộc Nữ
Cho a;b;c là các số thực dương thay đổi thỏa mãn : a+b+c=3
a) \(CMR:a^2+b^2+c^2\ge ab^2+bc^2+ca^2\)
b) Tìm giá trị nhỏ nhất của : \(P=a^2+b^2+c^2+\frac{ab+bc+ac}{a^2b+b^2c+c^2a}\)
a)\(a^2+b^2+c^2\ge ab^2+bc^2+ca^2\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge3\left(ab^2+bc^2+ca^2\right)\)
\(\Leftrightarrow a^3+b^3+c^3+a^2b+b^2c+c^2a-2\left(ab^2+a^2c+bc^2\right)\ge0\)
\(\Leftrightarrow\left(c^2a-2ca^2+a^3\right)+\left(a^2b-2ab^2+b^3\right)+\left(b^2c-2bc^2+c^3\right)\ge0\)
\(\Leftrightarrow a\left(c^2-2ca+a^2\right)+b\left(a^2-2ab+b^2\right)+c\left(b^2-2bc+c^2\right)\ge0\)
\(\Leftrightarrow a\left(c-a\right)^2+b\left(a-b\right)^2+c\left(b-c\right)^2\ge0\) (luôn đúng)
Dấu "=" <=>a=b=c=1
Câu b để sau đi trời nóng mà máy gõ mãi ko xong 1 dòng chán quá