Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thị Hà
Xem chi tiết
Nguyễn Văn Tuấn Anh
7 tháng 7 2019 lúc 9:56

a) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\) 

  \(a^2+b^2+c^2+2ab+2ac+2bc-3ab-3ac-3bc=0\) 

 \(a^2+b^2+c^2-ab-ac-bc=0\) 

\(2\left(a^2+b^2+c^2-ab-ac-bc\right)=0\) 

 \(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\) 

\(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\) 

\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\) 

\(\Rightarrow a=b=c\left(đpcm\right)\)

cường nguyễn văn
Xem chi tiết
GoKu Đại Chiến Super Man
19 tháng 8 2015 lúc 21:30

Triển khai vế trái ra, xong chuyển hết sang vế phải ta dc: (a-b)^2+(b-c)^2+(c-a)^2=0 
suy ra a-b=0, b-c=0, c-a=0. Vậy a=b=c

 

Lê Quang Tuấn Kiệt
5 tháng 8 2017 lúc 22:01

Triển khai vế trái ra, xong chuyển hết sang vế phải ta dc: (a-b)^2+(b-c)^2+(c-a)^2=0 
suy ra a-b=0, b-c=0, c-a=0. Vậy a=b=c

Vũ Thị Cẩm Tú
Xem chi tiết
Hi Mn
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 1 2023 lúc 12:06

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(\dfrac{ab}{a^2+b^2}+\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}=\dfrac{1}{c\left(a^2+b^2\right)}+\dfrac{1}{a\left(b^2+c^2\right)}+\dfrac{1}{b\left(c^2+a^2\right)}\)

\(\ge\dfrac{9}{a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)}\ge\dfrac{9}{2\left(a^3+b^3+c^3\right)}\)

\(\Rightarrow P\ge a^3+b^3+c^3+\dfrac{9}{2\left(a^3+b^3+c^3\right)}\ge3\sqrt[3]{\left(\dfrac{a^3+b^3+c^3}{2}\right)^2.\dfrac{9}{2\left(a^3+b^3+c^3\right)}}\)

\(=3\sqrt[3]{\dfrac{9\left(a^3+b^3+c^3\right)}{8}}\ge3\sqrt[3]{\dfrac{27abc}{8}}=\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Lê Kim An
Xem chi tiết
Anime
Xem chi tiết
Hắc Hường
2 tháng 2 2018 lúc 21:18

Giải:

Ta có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=4a^2+4b^2+4c^2-4ab-4bc-4ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=4a^2+4b^2+4c^2-4ab-4bc-4ac\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=4\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2-ab-bc-ca\right)=2\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(\Rightarrowđpcm\)

Mai Huyền My
2 tháng 2 2018 lúc 21:27

Ta có:

\(\left(a-b\right)^2\)+\(\left(b-c\right)^2\)+\(\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=4\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=4\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=4\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Leftrightarrow-2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\)

\(\Leftrightarrow a=b=c\left(đpcm\right)\)

Toàn Phạm Đức
Xem chi tiết
Linh Đỗ
28 tháng 7 2016 lúc 10:47

a+b+c=0

=> ( a+ b+c ) ^2 =0 ( rồi phân tích chuyển dấu )

=> a^2+ b^2+ c^2 = - ( 2ab+ 2ac+ 2bc) 

=> ( a ^2 + b^2 + c^2 ) ^2 = ( 2ab+ 2ac+ 2bc) ^2

. Rồi bạn tách tiếp nghen, bạn có làm được tiếp chứ? Có gì cứ hỏi tớ tiếp nhé

Minh Hiếu
Xem chi tiết
Minh Hiếu
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 10 2021 lúc 17:41

\(1,\)

Áp dụng BĐT Bunhiacopski:

\(A^2=\left(\sqrt{3-x}+\sqrt{x+7}\right)^2\le\left(1^2+1^2\right)\left(3-x+x+7\right)=2\cdot10=20\)

Dấu \("="\Leftrightarrow3-x=x+7\Leftrightarrow x=-2\)

 

Nguyễn Hoàng Minh
2 tháng 10 2021 lúc 17:46

\(A^2=3-x+x+7+2\sqrt{\left(3-x\right)\left(x+7\right)}\\ A^2=10+2\sqrt{\left(3-x\right)\left(x+7\right)}\ge10\)

Dấu \("="\Leftrightarrow\left(3-x\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-7\end{matrix}\right.\)

Nguyễn Hoàng Minh
2 tháng 10 2021 lúc 17:48

CÂU 2 THAM KHẢO:

Chứng minh a+b+c+ab+bc+ac < =1+căn 3 - Phạm Phú Lộc Nữ

Cố gắng hơn nữa
Xem chi tiết
Thắng Nguyễn
19 tháng 5 2018 lúc 13:53

sos là ra ez

Cố gắng hơn nữa
19 tháng 5 2018 lúc 14:11

là sao ?

Thắng Nguyễn
19 tháng 5 2018 lúc 18:43

a)\(a^2+b^2+c^2\ge ab^2+bc^2+ca^2\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge3\left(ab^2+bc^2+ca^2\right)\)

\(\Leftrightarrow a^3+b^3+c^3+a^2b+b^2c+c^2a-2\left(ab^2+a^2c+bc^2\right)\ge0\)

\(\Leftrightarrow\left(c^2a-2ca^2+a^3\right)+\left(a^2b-2ab^2+b^3\right)+\left(b^2c-2bc^2+c^3\right)\ge0\)

\(\Leftrightarrow a\left(c^2-2ca+a^2\right)+b\left(a^2-2ab+b^2\right)+c\left(b^2-2bc+c^2\right)\ge0\)

\(\Leftrightarrow a\left(c-a\right)^2+b\left(a-b\right)^2+c\left(b-c\right)^2\ge0\) (luôn đúng)

Dấu "=" <=>a=b=c=1

Câu b để sau đi trời nóng mà máy gõ mãi ko xong 1 dòng chán quá