Cho vabc vuông tại a lấy m là trung điểm của ab, N là trung điểm của ac
a) chứng minh MN//BC
b) Biết bc=13cm, ab=5cm,tính mn
cho tam giác abc, trên tia đối của tia ab,ac lần lượt lấy các điểm d và e sao cho ad = ab và ae = ac
a) chứng minh de//bc
b) gọi m, n lần lượt là trung điểm của bc và de. chứng minh a là trung điểm của mn
Bài 4. (3 điểm):
Cho ΔABC vuông tại A có AB < AC. Đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho DM = MA.
a) Chứng minh ΔAMC = ΔDMB.
b) Biết AB = 5cm, BC = 13cm. Tính AC.
c) Qua M kẻ đường thẳng MN vuông góc với AB tại N; Kẻ MK vuông góc với AC tại K. Chứng minh rằng CN, AM, BK đồng quy tại một điểm
Cho tam giác ABC vuông tại A,AB=12cm,BC=13cm. Gọi M, N lần lượt là trung điểm của AB và BC
a) Chứng minh MN là đường trung bình của tam giác. Từ đó chứng minh MN vuông với AB
b) Tính độ dài MN
a) Xét tam giác ABC có:
M là trung điểm AB(gt)
N là trung điểm BC(gt)
=> MN là đường trung bình
=> MN//AC
Mà AC⊥AB(tam giác ABC vuông tại A)
=> MN⊥AB(từ vuông góc đến song song)
b) Xét tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2\left(pytago\right)\)
\(\Rightarrow AC^2=BC^2-AB^2=13^2-12^2=25\Rightarrow AC=5\left(cm\right)\)
Ta có: MN là đường trung bình tam giác ABC
\(\Rightarrow MN=\dfrac{1}{2}AC=\dfrac{1}{2}.5=2,5\left(cm\right)\)
Bài 1: Cho ΔABC; I là trung điểm BC. Trên AB lấy M; N sao cho
AM = MN = NB. Đường thẳng CM cắt AI tại K. CMR: KA = KM
Bài 2: Cho ΔABC vuông tại A có AB = 12 cm, BC = 13cm. Gọi M, N lần lượt
là trung điểm của AB và BC.
a. Chứng minh: MN vuông góc AB
b. Tính MN?
Bài 3: Cho ΔABC có AB = 16cm, BC = 20cm, AC = 12cm
a. CM: ΔABC vuông tại A
b. Gọi M là trung điểm của BC. Kẻ MF vuông góc AC tại F. CM: FA = FC
c. Gọi E là trung điểm của AB. CM: ME vuông góc với AB và tính độ dài
ME.
Bài 1:
Xét ΔBMC có
N là trung điểm của BM
I là trung điểm của BC
Do đó: NI là đường trung bình của ΔBMC
Suy ra: NI//MK
Xét ΔANI có
M là trung điểm của AN
MK//NI
Do đó: K là trung điểm của AI
Gấp ạ!
Cho tam giác ABC vuông tại A có AB = 12cm, BC = 13cm. Gọi M, N là trung điểm của AB, BC.
a) Chứng minh: MN vuông góc với AB;
b) Tính độ dài MN.
c) Gọi P là trung điểm của AC. Tính độ dài cạnh MP, NP.
\(a,\) \(\left\{{}\begin{matrix}AM=MB\\BN=NC\end{matrix}\right.\Rightarrow\) MN là đường trung bình tam giác ABC
\(\Rightarrow MN//AC\Rightarrow MN\perp AB\left(AC\perp AB\right)\)
\(b,MN=\dfrac{1}{2}AC\left(tính.chất.đtb\right)\)
Mà \(AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-12^2}=5\left(cm\right)\left(pytago\right)\)
\(\Rightarrow MN=\dfrac{5}{2}\left(cm\right)\)
\(c,\left\{{}\begin{matrix}AM=MB\\AP=PC\end{matrix}\right.\Rightarrow\) MP là đường trung bình tam giác ABC
\(\Rightarrow MP=\dfrac{1}{2}BC=\dfrac{13}{2}\left(cm\right)\)
\(\left\{{}\begin{matrix}AP=PC\\BN=NC\end{matrix}\right.\Rightarrow\) NP là đường trung bình tam giác ABC
\(\Rightarrow NP=\dfrac{1}{2}AB=6\left(cm\right)\)
a: Xét ΔBAC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)
hay MN\(\perp\)AB
b: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay AC=5(cm)
\(\Leftrightarrow MN=2.5\left(cm\right)\)
Cho tam giác ABC nhọn (AB<AC). Gọi M,N làn lượt là trung điểm của AB, AC
a) Biết BC=12 cm> tính MN?
b) Lấy điểm D đối xứng với B qua N. Chứng minh tứ giác ABCĐ là hình bình hành.
c) Kẻ AP vuông BC, CQ vuông AD. Chứng minh P,N,Q thẳng hàng
Bài 3:
Cho tam giác ABC, trên cạnh AB lấy điểm M, trên cạnh AC lấy điểm N. Biết AM = 3cm, MB = 2cm, AN = 7,5cm, NC = 5cm.
a) Chứng minh MN // BC
b) Gọi I là trung điểm của BC, K là giao điểm của AI với MN. Chứng minh K là trung điểm của MN.
a: Xét ΔABC có AM/MB=AN/NC
nên MN//BC
b: Xét ΔABC có MN//BC
nên AM/AB=AN/AC(1)
Xét ΔABI có MK//BI
nên MK/BI=AM/AB(2)
Xét ΔACI có NK//CI
nên NK/IC=AN/AC(3)
Từ (1), (2) và (3) suy ra MK/BI=NK/CI
mà BI=CI
nên MK=NK
hay K là trung điểm của MN
Cho tam giác ABC vuông tại A có AB = AC. Gọi M là trung điểm của cạnh BC, D là trung điểm của cạnh AC
a). Chứng minh rằng: ∆AMB = ∆AMC và AM ⊥ BC
b) Từ A kẻ đường thẳng vuông góc với BD, cắt BC tại E. Trên tia đối của tia DE lấy điểm F sao cho DF = DE. Chứng minh rằng: ∆ADF = ∆CDE, từ đó suy ra: AF // CE
c) Từ C dựng đường thẳng vuông góc với AC, cắt AE tại G. Chứng minh rằng ∆BAD = ∆ACG
d) Chứng minh rằng: AB = 2CG
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
b: Xét ΔADF và ΔCDE có
DA=DC
\(\widehat{ADF}=\widehat{CDE}\)
DF=DE
Do đó: ΔADF=ΔCDE
Xét tứ giác AECF có
D là trung điểm của AC
D là trung điểm của FE
Do dó: AECF là hình bình hành
Suy ra: AF//EC
cho tam giác ABC có 3 góc nhọ. Trên tia đối của tia AB và AC lấy điểm D và E sao cho: A là trung điểm của BD, A là trung điểm của AC
a) Chứng minh ED=BC
b) Chứng minh EB//DC
c) vẽ AM vuông góc ED (M thuộc ED), vẽ AN vuông góc BC (N thuộc BC). Chứng minh A là trung diểm của MN
( k có hình cũng đc nếu có thì càng tốt, thanks rất nhiều!!)
Cho ΔABC vuông cân tại A , biết AB=AC=8cm
a) Tính BC
b) Từ A kẻ AM⊥BC. CMR: M là trung điểm BC
c) Từ M kẻ MN⊥AC. ΔAMN là tam giác vuông cân
d) Trên tia đối của tia MN lấy điểm E sao cho EN=NM..