Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huong Bui Bui Huong
Xem chi tiết
Phạm Tuấn Đạt
4 tháng 10 2018 lúc 21:08

1;\(P=4x-x^2=-x^2+4x-4+4=-\left(x^2-4x+4\right)+4=-\left(x-2\right)^2+4\)

Có \(-\left(x-2\right)^2\le0\)

\(\Rightarrow P\le0+4=4\)

Vậy \(Max_P=4< =>x=2\)

2;\(P=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)

Vậy \(MinP=1< =>x=2\)

nguyenlinh
Xem chi tiết
Nguyễn Thị Thương Hoài
16 tháng 12 2022 lúc 12:56

đk x2 - 2x \(\ge\) 0  => x \(\in\) (-\(\infty\); 0] \(\cup\) [ 2; + \(\infty\))

\(\sqrt{x^2-2x}\) \(\ge\) 0

\(\sqrt{x^2-2x}\) \(\le\) 0 

\(\le\) 3 => A(max) = 3 <=> x2 - 2x = 0 \(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Nguyễn Khánh Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 15:06

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

....
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 6 2021 lúc 17:11

Với các số thực không âm a; b ta luôn có BĐT sau:

\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) (bình phương 2 vế được \(2\sqrt{ab}\ge0\) luôn đúng)

Áp dụng:

a. 

\(A\ge\sqrt{x-4+5-x}=1\)

\(\Rightarrow A_{min}=1\) khi \(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

\(A\le\sqrt{\left(1+1\right)\left(x-4+5-x\right)}=\sqrt{2}\) (Bunhiacopxki)

\(A_{max}=\sqrt{2}\) khi \(x-4=5-x\Leftrightarrow x=\dfrac{9}{2}\)

b.

\(B\ge\sqrt{3-2x+3x+4}=\sqrt{x+7}=\sqrt{\dfrac{1}{3}\left(3x+4\right)+\dfrac{17}{3}}\ge\sqrt{\dfrac{17}{3}}=\dfrac{\sqrt{51}}{3}\)

\(B_{min}=\dfrac{\sqrt{51}}{3}\) khi \(x=-\dfrac{4}{3}\)

\(B=\sqrt{3-2x}+\sqrt{\dfrac{3}{2}}.\sqrt{2x+\dfrac{8}{3}}\le\sqrt{\left(1+\dfrac{3}{2}\right)\left(3-2x+2x+\dfrac{8}{3}\right)}=\dfrac{\sqrt{510}}{6}\)

\(B_{max}=\dfrac{\sqrt{510}}{6}\) khi \(x=\dfrac{11}{30}\)

Edogawa Conan
30 tháng 6 2021 lúc 17:11

a)Ta có:A=\(\sqrt{x-4}+\sqrt{5-x}\)

        =>A2=\(x-4+2\sqrt{\left(x-4\right)\left(5-x\right)}+5-x\)

        =>A2= 1+\(2\sqrt{\left(x-4\right)\left(5-x\right)}\ge1\)

        =>A\(\ge\)1

Dấu '=' xảy ra <=> x=4 hoặc x=5

Vậy,Min A=1 <=>x=4 hoặc x=5

Còn câu b tương tự nhé

Hippo
Xem chi tiết
Trần Đức Huy
Xem chi tiết
☆Châuuu~~~(๑╹ω╹๑ )☆
7 tháng 2 2022 lúc 9:45

undefined

Đinh Thị Thùy Trang
Xem chi tiết
Doanh Phung
Xem chi tiết
Nguyễn Văn Tuấn Anh
18 tháng 7 2019 lúc 20:57

a) Để A có nghĩa :

\(\Rightarrow\sqrt{2x+3-x^2\: }\Leftrightarrow2+\sqrt{2x+3-x^2}\ge2\forall x\) 

\(\Rightarrow\sqrt{-\left(x-1\right)^2+4}\ge0\) 

\(\Leftrightarrow-\left(x-1\right)^2\ge-4\) 

\(\Leftrightarrow\left(x-1\right)^2\le4\) 

\(\Rightarrow3\ge x\ge-1\) 

Vậy.....

A TV
Xem chi tiết