tìm gtln của 11-(2x-1)2 -|y+3|
1. Tìm GTNN
C = |x - 1/2| + (y + 2)^2 +11
2. Tìm GTLN
a) C = - |2 - 3x| + 1/2
b) D = - 3 - |2x + 4|
1.Cho các số thực x,y thỏa:x+y=2 .Tìm GTNN của D=x3 +y3+2xy
2. Tìn GTLN của biểu thức A= (2x+1)2 - (3x-2)2 +x-11
1.
$D=x^3+y^3+2xy=(x+y)^3-3xy(x+y)+2xy=2^3-3xy.2+2xy$
$=8-6xy+2xy=8-4xy=8-4x(2-x)=8-8x+4x^2=(4x^2-8x+4)+4$
$=(2x-2)^2+4\geq 4$
Vậy $D_{\min}=4$. Giá trị này đạt tại $2x-2=0\Leftrightarrow x=1$
$y=2-x=2-1=1$
2.
$A=(2x+1)^2-(3x-2)^2+x-11=4x^2+4x+1-(9x^2-12x+4)+x-11$
$=4x^2+4x+1-9x^2+12x-4+x-11$
$=-5x^2+17x-14$
$-A=5x^2-17x+14=5(x^2-3,4x+1,7^2)-0,45=5(x-1,7)^2-0,45\geq -0,45$
$\Rightarrow A\leq 0,45$
Vâ $A_{\max}=0,45$
Giá trị này đạt tại $x-1,7=0\Leftrightarrow x=1,7$
Tìm GTLN của A=(2x+1)^2-(3x+2)^2+2x+11
\(A=\left(2x+1\right)^2-\left(3x+2\right)^2+2x+11\)
\(=4x^2+4x+1-\left(9x^2+12x+4\right)+2x+11\)
\(=-5x^2-6x+8\)
\(=-5\left(x+\dfrac{3}{5}\right)^2+\dfrac{49}{5}\le\dfrac{49}{5}\)
\(A_{max}=\dfrac{49}{5}\) khi \(x=-\dfrac{3}{5}\)
Tìm GTLN, GTNN của biểu thức: `C=(6x+11)/(x^2-2x+3)`
tìm gtln của:
P=-(2x+1)2-7(y-3,5)2+\(\dfrac{2}{3}\)
\(P=-\left(2x+1\right)^2-7\left(y-3,5\right)^2+\dfrac{2}{3}\)
vì \(\left\{{}\begin{matrix}-\left(2x+1\right)^2\le0,\forall x\\-7\left(y-3,5\right)^2\le0,\forall y\end{matrix}\right.\)
\(\Rightarrow P=-\left(2x+1\right)^2-7\left(y-3,5\right)^2+\dfrac{2}{3}\le\dfrac{2}{3}\)
Dấu "=" xảy ra khi
\(\left\{{}\begin{matrix}2x+1=0\\y-3,5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=3,5=\dfrac{7}{2}\end{matrix}\right.\)
Vậy \(GTLN\left(P\right)=\dfrac{2}{3}\left(tạix=-\dfrac{1}{2};y=\dfrac{7}{2}\right)\)
a,tìm GTNN
d=5|x+3y+1|^11+7(x^2-4)^12+20
b, tim GTLN
E=27-3(x^2+1)^2012-3|2x-y+4|
Bài 1:Tìm x,y biết:
(1/2x-5)20+(y2-1/4)10<0
Bài 2:Tìm x thuộc Z biết:
(x-7)x+1-(x-7)x+11=0
Bài 3:A,Tìm GTNN của biểu thức A=(2x+1/3)4-1
B,Tìm GTLN của biểu thức B=-(4/9x-2/15)6+3
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
1. TÌM GTNN của:
a) A= (x+1)2 - 3
b) B= |x - 2| + 145
2. TÌM GTLN của:
M= 11 - |2x - 3|
tìm GTLN và GTNN của biểu thức sau :
D= -(2x-3)2-3
E= (2x-5)2+(y+1/2)2+2022
a: (2x-3)^2>=0
=>-(2x-3)^2<=0
=>D<=-3
Dấu = xảy ra khi x=3/2
b: (2x-5)^2>=0
(y+1/2)^2>=0
=>(2x-5)^2+(y+1/2)^2>=0
=>D>=2022
Dấu = xảy ra khi x=5/2 và y=-1/2