Giải Pt: \(3x^2-5\sqrt[3]{x^3+1}+8x+5=0\)
giải pt :
a, \(3\sqrt[3]{3x+5}=x^3+3x^2+3x-1\)
b, \(\sqrt[3]{6x+1}=8x^3-4x-1\)
a.
\(3\sqrt[3]{3\left(x+1\right)+2}=\left(x+1\right)^3-2\)
Đặt \(\sqrt[3]{3\left(x+1\right)+2}=y\) ta được:
\(\left\{{}\begin{matrix}3y=\left(x+1\right)^3-2\\3\left(x+1\right)+2=y^3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3y+2=\left(x+1\right)^3\\3\left(x+1\right)+2=y^3\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^3-y^3=3y-3\left(x+1\right)\)
\(\Leftrightarrow\left(x+1-y\right)\left[\left(x+1\right)^2+y\left(x+1\right)+y^2+3\right]=0\)
\(\Leftrightarrow x+1=y\)
\(\Leftrightarrow\left(x+1\right)^3=y^3\)
\(\Leftrightarrow\left(x+1\right)^3=3\left(x+1\right)+2\)
\(\Leftrightarrow x^3+3x^2-4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)^2=0\)
b.
\(\Leftrightarrow8x^3-\left(6x+1\right)+2x-\sqrt[3]{6x+1}=0\)
Đặt \(\left\{{}\begin{matrix}2x=a\\\sqrt[3]{6x+1}=b\end{matrix}\right.\) ta được:
\(a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow2x=\sqrt[3]{6x+1}\)
\(\Leftrightarrow8x^3-6x-1=0\)
Đặt \(f\left(x\right)=8x^3-6x-1\)
\(f\left(x\right)\) là hàm đa thức nên liên tục trên R, đồng thời \(f\left(x\right)\) bậc 3 nên có tối đa 3 nghiệm
\(f\left(-1\right)=-3< 0\) ; \(f\left(-\dfrac{1}{2}\right)=1>0\) \(\Rightarrow f\left(-1\right).f\left(-\dfrac{1}{2}\right)< 0\)
\(\Rightarrow f\left(x\right)\) có 1 nghiệm thuộc \(\left(-1;-\dfrac{1}{2}\right)\) (1)
\(f\left(0\right)=-1\Rightarrow f\left(0\right).f\left(-\dfrac{1}{2}\right)< 0\Rightarrow f\left(x\right)\) có 1 nghiệm thuộc \(\left(-\dfrac{1}{2};0\right)\) (2)
\(f\left(1\right)=1\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) có 1 nghiệm thuộc \(\left(0;1\right)\) (3)
Từ (1);(2);(3) \(\Rightarrow\) cả 3 nghiệm của \(f\left(x\right)\) đều thuộc \(\left(-1;1\right)\)
Do đó, ta chỉ cần tìm nghiệm của \(f\left(x\right)\) với \(x\in\left(-1;1\right)\)
Do \(x\in\left(-1;1\right)\), đặt \(x=cosu\)
\(\Rightarrow8cos^3u-6cosu-1=0\)
\(\Leftrightarrow2\left(4cos^3u-3cosu\right)=1\)
\(\Leftrightarrow2cos3u=1\)
\(\Leftrightarrow cos3u=\dfrac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}3u=\dfrac{\pi}{3}+k2\pi\\3u=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u=\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\\u=-\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\end{matrix}\right.\)
Vậy nghiệm của pt là: \(x=cosu=\left\{cos\left(\dfrac{\pi}{9}\right);cos\left(\dfrac{5\pi}{9}\right);cos\left(\dfrac{7\pi}{9}\right)\right\}\)
giải pt :
a, \(\sqrt[3]{2-x}=1-\sqrt{x-1}\)
b, \(2\sqrt[3]{3x-2}+3\sqrt{6-5x}-8=0\)
c, \(\left(x+3\right)\sqrt{-x^2-8x+48}=x-24\)
d, \(\sqrt[3]{\left(2-x\right)^2}+\sqrt[3]{\left(7+x\right)\left(2-x\right)}=3\)
e, \(\dfrac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}=6-x\)
Giải pt
\(1)4x^2+\sqrt{3x+1}+5=13x\)
\(2)7x^2-13x+8=2x^2.\sqrt[3]{x\left(1+3x-3x^2\right)}\)
\(3)x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
\(4)x^3-5x^2+4x-5=\left(1-2x\right)\sqrt[3]{6x^2-2x+7}\)
\(5)8x^2-13x+7=\left(1+\dfrac{1}{x}\right)\sqrt[3]{3x^2-2}\)
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
(5) giải pt:
\(\sqrt{3x+1}+\sqrt{2-x}-3=0\)
\(ĐK:-\dfrac{1}{3}\le x\le2\\ PT\Leftrightarrow\left(\sqrt{3x+1}-2\right)-x+1-\sqrt{2-x}\left(\sqrt{2-x}-1\right)=0\\ \Leftrightarrow\dfrac{3\left(x-1\right)}{\sqrt{3x+1}+2}-\left(x-1\right)-\dfrac{\sqrt{2-x}\left(1-x\right)}{\sqrt{2-x}+1}=0\\ \Leftrightarrow\left(x-1\right)\left(\dfrac{3}{\sqrt{3x+1}+2}+\dfrac{\sqrt{2-x}}{\sqrt{2-x}+1}-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\\dfrac{3}{\sqrt{3x+1}+2}+\dfrac{\sqrt{2-x}}{\sqrt{2-x}+1}-1=0\end{matrix}\right.\)
Với \(x\ge-\dfrac{1}{3}\) thì \(\dfrac{3}{\sqrt{3x+1}+2}+\dfrac{\sqrt{2-x}}{\sqrt{2-x}+1}-1>0\)
Vậy pt có nghiệm duy nhất \(x=1\)
ĐKXĐ: \(-\dfrac{1}{3}\le x\le2\)
\(\sqrt{3x+1}=3-\sqrt{2-x}\) (do \(-\dfrac{1}{3}\le x\le2\Rightarrow3-\sqrt{2-x}\ge3-\sqrt{2+\dfrac{1}{3}}>0\))
\(\Leftrightarrow3x+1=9+2-x-6\sqrt{3-x}\)
\(\Leftrightarrow3\sqrt{2-x}=5-2x\)
\(\Leftrightarrow9\left(2-x\right)=\left(5-2x\right)^2\)
\(\Leftrightarrow4x^2-11x+7=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{7}{4}\end{matrix}\right.\) (thỏa mãn)
giải pt \(3x^3+11x^2-3x+7-24x\sqrt{8x-1}+3\sqrt{8x-1}=0\)
\(3x^3+11x^2-3x+7-24x\sqrt{8x-1}+3\sqrt{8x-1}=0\)
Nhận thấy x = 0 không là nghiệm của pt
\(\Leftrightarrow3x^2+11x-3+\frac{7}{x}-24\sqrt{8x-1}+\frac{3}{x}\sqrt{8x-1}=0\)
Đặt \(\frac{1}{x}=t\)
\(\Leftrightarrow3x^2+11x-\left(3-7t+3t\left(\frac{8}{t}-1\right)\sqrt{\frac{8}{t}-1}\right)=0\)
Coi t là tham số mà tính nghiệm
giải pt :
a, \(\sqrt[3]{3x-5}=\left(2x-3\right)^3-x+2\)
b, \(\sqrt[3]{81x-8}=x^3-2x^2+\dfrac{4}{3}x-2\)
c,\(\sqrt[3]{x-2}=8x^3-60x^2+151x-128\)
a.
\(\Leftrightarrow\sqrt[3]{3x-5}=\left(2x-3\right)^3+2x-3-\left(3x-5\right)\)
Đặt \(\left\{{}\begin{matrix}2x-3=a\\\sqrt[3]{3x-5}=b\end{matrix}\right.\)
\(\Rightarrow b=a^3+a-b^3\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt[3]{3x-5}=2x-3\)
\(\Leftrightarrow3x-5=\left(2x-3\right)^3\)
\(\Leftrightarrow8x^3-36x^2+51x-22=0\)
\(\Leftrightarrow\left(x-2\right)\left(8x^2-20x+11\right)=0\)
\(\Leftrightarrow...\)
b.
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x+3x-2-\sqrt[3]{81x-8}=0\)
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x+\dfrac{\left(3x-2\right)^3-\left(81x-8\right)}{\left(3x-2\right)^2+\left(3x-2\right)\sqrt[3]{81x-8}+\sqrt[3]{\left(81x-8\right)^2}}=0\)
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x+\dfrac{27\left(x^3-2x^2-\dfrac{5}{3}x\right)}{\left(3x-2\right)^2+\left(3x-2\right)\sqrt[3]{81x-8}+\sqrt[3]{\left(81x-8\right)^2}}=0\)
\(\Leftrightarrow\left(x^3-2x^2-\dfrac{5}{3}x\right)\left(1+\dfrac{27}{\left(3x-2\right)^2+\left(3x-2\right)\sqrt[3]{81x-8}+\sqrt[3]{\left(81x-8\right)^2}}\right)=0\)
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x=0\)
c.
\(\Leftrightarrow\sqrt[3]{x-2}=\left(2x-5\right)^3+x-3\)
\(\Leftrightarrow\sqrt[3]{x-2}=\left(2x-5\right)^3+\left(2x-5\right)-\left(x-2\right)\)
Đặt \(\left\{{}\begin{matrix}2x-5=a\\\sqrt[3]{x-2}=b\end{matrix}\right.\)
\(\Rightarrow b=a^3+a-b^3\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow2x-5=\sqrt[3]{x-2}\)
\(\Leftrightarrow\left(2x-5\right)^3=x-2\)
\(\Leftrightarrow\left(x-3\right)\left(8x^2-36x+41\right)=0\)
Giải các pt sau:
a) (x-3)-(x-3)(2x-5)/6=(x-3)(3-x)/4
b) (2x-7)^2-x^2+8x-16=0
c) (3x+1)(x-3)=(3x+1)(2x-5)
\(\left(3x+1\right)\left(x-3\right)=\left(3x+1\right)\left(2x-5\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(x-3\right)-\left(3x+1\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x-3-2x+5\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(2-x\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}3x+1=0\\2-x=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[\begin{matrix}3x=-1\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x=-\frac{1}{3}\\x=2\end{matrix}\right.\)
Vậy tập nghiệm của pt là \(S=\left\{-\frac{1}{3};2\right\}\)
Có : \(\left(3x+1\right)\left(x-3\right)=\left(3x+1\right)\left(2x-5\right)\)
\(\Leftrightarrow\) \(\left(3x+1\right)\left(x-3\right)-\left(3x+1\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\) \(\left(3x+1\right)\left(x-3-2x+5\right)=0\)
\(\Leftrightarrow\) \(\left(3x+1\right)\left(-x+2\right)=0\)
\(\Leftrightarrow\) \(\left[\begin{matrix}3x+1=0\\-x+2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[\begin{matrix}3x=-1\\-x=-2\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[\begin{matrix}x=\frac{-1}{3}\\x=2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{-1}{3};2\right\}\)
\(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)
\(\Leftrightarrow\frac{24\left(x-3\right)}{24}-\frac{4\left(x-3\right)\left(2x-5\right)}{24}=-\frac{6\left(x-3\right)\left(x-3\right)}{24}\)
\(\Leftrightarrow24\left(x-3\right)-4\left(x-3\right)\left(2x-5\right)+6\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)\left[24-4\left(2x-5\right)+6\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(24-8x+20+6x-18\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(26-2x\right)=0\)
\(\Leftrightarrow2\left(x-3\right)\left(13-x\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x-3=0\\13-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x=3\\x=13\end{matrix}\right.\)
Vậy tập nghiệm của pt là \(S=\left\{3;13\right\}\)
Giải PT
a)\(8x^2-8x+3=\left(2x-1\right)\sqrt{8x^2-6x+3}\)
b)\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
c)\(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
GIẢI = CÁCH ĐẶT ẨN PHỤ KHÔNG HOÀN TOÀN
MONG CÁC BẠN GIẢI NHANH GIÚP MÌNH
câu a:
\(8x^2-6x+3-2x=\left(2x-1\right)\sqrt{8x^2-6x+3}\)
đặt \(t=\sqrt{8x^2-6x+3}\Leftrightarrow t^2=8x^2-6x+3\)phương trình trở thành
\(t^2-2x=\left(2x-1\right)t\Leftrightarrow t^2-\left(2x-1\right)t-2x=0\)
có \(\Delta=\left(2x-1\right)^2+8x=\left(2x+1\right)^2\Rightarrow\orbr{\begin{cases}t=-1\\t=2x\end{cases}}\)
\(t=-1\Rightarrow8x^2-6x+3=1\Leftrightarrow8x^2-6x+2=0VN\)\(t=2x\Rightarrow8x^2-6x+3=4x^2\Leftrightarrow4x^2-6x+3=0VN\)Câu b:
Đặt \(t=\sqrt{x^2+1}\Leftrightarrow t^2=x^2+1\left(t>0\right)\)
PT\(\Leftrightarrow t^2-\left(x+3\right)t+3x=0\)
có :\(\Delta=\left(x+3\right)^2-4.3x=\left(x-3\right)^2\Rightarrow\orbr{\begin{cases}t=3\\t=x\end{cases}}\)
\(t=3\Rightarrow9=x^2+1\Leftrightarrow x^2=8\Leftrightarrow\orbr{\begin{cases}x=2\sqrt{2}\\x=-2\sqrt{2}\end{cases}}\)\(t=x\Leftrightarrow x^2=x^2+1VN\)b) phương trình đã cho nhân đôi sau đó biến đổi tương đương:
\(\left[\sqrt{x^2+1}-\left(x+3\right)\right]^2=8\)
\(\Leftrightarrow\sqrt{x^2+1}-\left(x+3\right)=\pm2\sqrt{2}\)
c) \(PT\Leftrightarrow\left(x+2\right)^3+2\sqrt{\left(x+2\right)^3}=\left(3x+2\right)^2+2\left(3x+2\right)\)
xét: \(f\left(t\right)=t^2+2t\left(t>0\right)\)
\(f\left(t\right)=2t+2>0\)
\(\Rightarrow\sqrt{\left(x+2\right)^3}=3x+2\)
Tự lm nốt nhé @tran huu dinh
giải pt
\(3x^3-17x^2-8x+9+\sqrt{3x-2}-\sqrt{7-x}=0 \)