Cho tam giác ABC có góc A bằng 140 độ. các đường trung trực của AB và AC lần lượt cắt BC tại E và F và kéo dài hai đường trung trực của hai cạnh AB và AC sẽ cắt nhau tại I.
a) chứng minh các tam giác ABE, ACF , BIC cân
b) tính số đo g
Bài 4. Tam giác ABC cân tại A có góc A = 120°, các đường trung trực của AB và AC cắt nhau tại O, căt cạnh BC lần lượt tại E và F Chứng minh E là trực tâm, trọng tâm tam giác OAB và F là trực tâm, trọng tâm tam giác OAC Bài 5. Tam giác ABC. Qua các đinh A, B, C kẻ các đường thắng song song với cạnh đôi diện, chúng cắt nhau tạo thành tam giác DEF. Chứng minh răng các đường cao của tam giác ABC là các đường trung trực của tam giác DEF MECA và lấy điểm N sao c
Cho tam giác ABC cân tại A có góc A bằng 120o. Vẽ đường trung trực các cạnh AB và AC cắt nhau tại O và cắt BC lần lượt tại E và F. Nối AO cắt BC tại H.
a) CMR: AO là trung trực của BC
b) CMR: tam giác OEF đều
c) CMR: tam giác AEF đều
d) CMR: BE = EF = FC
a: O nằm trên trung trực của AB,AC
=>OA=OB; OA=OC
=>OB=OC
mà AB=AC
nên AO là trung trực của BC
b,c: Xét ΔEAB có EA=EB
nên ΔEAB cân tại E
=>góc EAB=30 độ
=>góc OAE=30 độ
Xet ΔFAC co FA=FC
nên ΔFAC cân tại F
=>góc FAC=30 độ
=>góc FAO=30 độ
=>góc EAO=góc FAO
=>AO là phân giác của góc FAE
mà AO vuông góc FE
nên ΔAFE cân tại A
=>ΔAEO=ΔAFO
=>OE=OF
=>ΔOEF cân tại O
Cho tam giác ABC Có góc A khác 90 độ B C góc nhọn Các đường trung trực của AB và AC cắt nhau tại O và cắt BC lần lượt là E và F
Chứng minh AO là phân giác góc EAF
1/ Cho tam giác ABC vuông tại A và góc C bằng 30 độ . Vẽ trung trực của AC , cắt AC tại H và BC tại D , nối AD
a)Chứng minh tam giác ABD đều(sẵn vẽ hình giúp mình nhé)
b)Kẻ phân giác của góc B cắt AD tại K và cắt DH kéo dài I. CM: I là tâm đường tròn đi qua ba đỉnh của tam giác ADC
c)Vẽ IE vuông góc với DC; IF vuông góc với AB kéo dài. CM:IF=IE=IK
2/ Cho tam giác ABC vẽ AH vuông góc với BC. Gọi I và K lần lượt là hình chiếu của H lên AB và AC. Kéo dài HI một đoạn ID=HI và kéo dài HK một đoạn KE=HK. CM:A nằm trên trung trực của DE( vẽ hình giúp mình nhé các bạn )
3/Cho tam giác ABC cân tại A,M và N là hai điểm tương ứng thuộc hai cạnh AB và AC sao cho BM=AN. Gọi O là điểm cách đều ba đỉnh A,B,C .CM: Ocách đều 2 điểm M và N
4/Trên cạnh AB,BC,AC của tam giác đều ABC . Lấy các điểm theo thứ tự M,N,P sao cho AM=BN=CP.Gọi O là giao điểm của 3 đường trung trực của tam giác ABC . CM: O cũng là giao điểm của ba đường trung trực của tam giác MNP
5/Cho tam giác đều ABC . Trên các cạnh BC,CA,AB lần lượt lất các điểm D,E,F sao cho BD=CE=AF.CM:
a)Tam giác AEF đều
b)Các trung trực của ABC và DEF cùng đi qua một điểm
6/Cho tam giác ABC vuông tại A. Tia phân giác BD và CE cắt nhai tại O
a)Chứng tỏ O cách đều ba cạnh của tam giác
b)Từ D và E hạ d8oừng vuông góc xuống BC và cắt CB tại H và K . Tính số đo góc HAk
Mong mọi người vẽ hình và giúp mình giải các bài trên nhé nếu có dài quá thì cho mình xin lỗi
Cho Δ ABC cân tại A, có góc A = 120độ. Đường trung trực của các cạnh AB,AC cắt BC lần lượt tại D và E. Chứng minh tam giác ADE là tam đều
Cho tam giác ABC cân ở A, đường phân giác AK. Các đường trung trực của AB và AC cắt nhau tại O.
a) Chứng minh ba điểm A, K, O thẳng hàng.
b) Kéo dài CO cắt AB ở D, kéo dài BO cắt AC ở E. Chúng minh AK và các đường trung trực của AD và AE đồng quy.
Cho tam giác ABC cân (AB=AC), góc A>90 . Vẽ đường trung trực của các cạnh AB,AC cắt các cạnh này tại M và N và cắt BC lần lượt tại P và Q .a)các tam giác APB và tam giác AQC là tam giác gì.b) gọi O là giao điểm của MP và QN . Chứng minh tam giác AMO=tam giác ANO c) chứng minh O là trực tâm của hai tam giác APB và AQC
Cho tam giác ABC có góc A=140 độ, các đường trung trực của AB, AC cắt BC tại E và F; cắt nhau tại I
a, CMR: Tam giác ABE, tam giác ACF, tam giác BIC là các tam giác cân
b, BIC=?
Cho tam giác ABC cân tại A có góc A=120 độ, kẻ AH vuông góc BC tại H. Gọi D là trung điểm của AB, đường trung trực của AB cắt AB tại D và cắt BC ở E
a)C/m tam giác BED= tam giác AEH
b)Hai đường thẳng AH và DE cắt nhau tại M. Chứng minh AM=AC
Giúp với mình cần gấp, cảm ơn
Cho Δ ABC cân tại A, có góc A = 120độ. Đường trung trực của các cạnh AB,AC cắt BC lần lượt tại D và E. Chứng minh tam giác ADE là tam đều
\(\widehat{B}=\widehat{C}=\dfrac{180^0-120^0}{2}=30^0\)
Gọi H là trung điểm của AB, K là trung điểm của AC
Ta có: D nằm trên đường trung trực của AB
nên DA=DB
\(\Leftrightarrow\widehat{DAH}=30^0\)
Ta có: E nằm trên đường trung trực của AC
nên EA=EC
=>\(\widehat{EAK}=30^0\)
Xét ΔAHD vuông tại H và ΔAKE vuông tại K có
AH=AK
\(\widehat{HAD}=\widehat{KAE}\)
Do đó: ΔAHD=ΔAKE
Suy ra: AD=AE
hay ΔADE cân tại A
mà \(\widehat{EAD}=60^0\)
nên ΔAED đều