cho M = 3+3^2+...+3^100.chứng tỏ M chia hết cho 120
bài 3:cho M = 2 + 2^2 + 2^3 + ... +2^100
a,chứng tỏ rằng M chia hết cho 2
b,chứng tỏ rằng M chia hết cho 3
c,chứng tỏ rằng M chia hết cho 15
d,tìm chữ số tận cùng của M
e,tính M
cần gấppppppppppppppppppppp
A = 3 + 3^2+ 3^3 + 3^3 + ... + 3^132
a, chứng tỏ A chia hết cho 40
b, chứng tỏ A chia hết cho 39
c, chứng tỏ A chia hết cho 120
a: A=3(1+3+3^2+3^3)+...+3^129(1+3+3^2+3^3)
=40(3+...+3^129) chia hết cho 40
b: A=(3+3^2+3^3)+....+3^129(3+3^2+3^3)
=39(1+...+3^129) chia hết cho 39
c: A chia hết cho 40
A chia hết cho 3
=>A chia hết cho BCNN(40;3)=120
Cho M = 3+32+33+34+...........+3100
Chứng minh M chia hết cho 120
\(M=3+3^2+3^3+3^4+...+3^{100}\)
\(\Rightarrow M=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(\Rightarrow M=\left(3+9+27+81\right)+...+3^{96}.\left(3+3^2+3^3+3^4\right)\)
\(\Rightarrow M=120+...+3^{96}.120\)
\(\Rightarrow M=\left(1+...+3^{96}\right).120⋮120\)
\(\Rightarrow M⋮120\left(đpcm\right)\)
Cho M= 2+2^2+2^3+...+2^100.
Chứng tỏ M chia hết cho 3;5;15
Tìm chữ số tận cùng của M
Tính M
Cho biểu thức M =(1+1/2+1/3+1/4+...+1/100)×2×3×4×5×…×100
Chứng tỏ rằng M chia hết cho 101
Www duoccvvvv làm gì để giảm cân nhanh và an toàn cho người ta có thể học được cách điệu với áo dài đau đớn đau đầu sốt ói mửa và tiêu thụ sản phẩm của mình và người
chứng tỏ rằng [7+1].[7+2] chia hết cho 3
chứng tỏ rằng [3^100+19^990] chia hết cho 2
abcabc có ít nhất 3 ước số nguyên tố
M=1+3^1+3^2+.......+3^30
Tìm chữ số tận cùng của M,từ đó suy ra M có phải là số chính phương không
cmr [7+1].[7+2] chia hết cho 3
=8x9
=72
72 chia hết cho 3
ĐCPCM
Ta có chú ý chẵn cộng chẵn bằng chẵn
lẻ cộng chẵn bằng lẻ
lẻ cộng lẻ là chẵn
mà ta thấy \(3^{100}\) và\(19^{990}\)là lẻ mà lẻ cộng lẻ bằng chẵn
=> mà số chẵn chia hết cho 2
ĐCPCM
3S=3+3^2+3^3+...+3^{31}
3S-S=3^{31}-1
2S=3^{4.7+3}-1
2S=81^7.27-1
2S=\overline{......1}.27-1
2S=\overline{......7}-1=\overline{......6}
S=\overline{........3}
Vậy chữ số tận cùng của S là 3=> S không phải là số chính phương
1) CMR: (7+1)(7+2)\(⋮\)3
\(\left(7+1\right)\left(7+2\right)=8\cdot9⋮3\left(đpcm\right)\)
2) CMR: \(3^{100}+19^{990}⋮2\)
ta có: \(3^{100}\)có chữ số tận cùng là số lẻ
\(19^{990}\)có chữ số tận cùng là số lẻ
mà lẻ + lẻ = chẵn => đpcm
3) abcabc có ít nhất 3 ước số nguyên tố
ta có: abcabc = abc x 1001 = abc x 11 x 7 x 13
Vậy...
4) Cho \(M=1+3^1+3^2+...+3^{30}\)
Tìm chữ số tận cùng của M. Từ đó suy ra M có phải số chính phương không?
ta có: \(M=1+3^1+3^2+...+3^{30}\)(1)
\(\Rightarrow3M=3+3^2+3^3+...+3^{31}\)(2)
(2) - (1) \(\Leftrightarrow3M-M=\left(3+3^2+3^3+...+3^{31}\right)-\left(1+3^1+3^2+...+3^{30}\right)\)
\(\Leftrightarrow2M=3^{31}-1\)
ta có: \(3^{31}=3^{28}\cdot3^3=\left(3^4\right)^7\cdot27=\left(...1\right).27=...7\Rightarrow2M=...7-1=...6\)
\(\Rightarrow\orbr{\begin{cases}M=...3\\M=...8\end{cases}}\)mà số chính phương không có tận cùng là 3, 8
=>đpcm
Học tốt nhé ^3^
cho m =4+4^2+4^3+4^4+....+ 4^100 chứng tỏ rằng m chia hết cho 20
Cho tổng M = 1 + 4 + 4^2 + 4^3+...+4^100 .
Chứng tỏ rằng M ko chia hết cho 5.
Giải :
M = 1 + 4 + 4^2 + 4^3 +...+ 4^100
= 1 + ( 4+4^2) + ( 4^3+4 ^4) +... + ( 4^99+4^100)
= 1+4 . (1+4) + 4^3 . ( 1+4) +...+4^99 . (1+4)
=1+4.5 + 4^3.5+... + 4^99.5
= 1 +5. ( 4 + 4^3+...+4^99)
Vì 5. ( 4+ 4^3 +...+ 4^99) chia hết cho 5.
Mà 1 không chia hết cho 5.
=> M không chia hết cho 5.
Cảm ơn ! Quên chưa cảm ơn trước :>
cho M=2 + 22 +23+...+2100
Chứng tỏ rằng M chia hết cho 5
Đề bài sai nhé bạn,lẽ ra phải là M=1+2+22+23+..+2100.
Nếu đề bài là như thế này thì nhóm (1+22) + (2+23) + ...(298+2100)
Mỗi ngoặc đều nhóm đc thừa số 5=1+22 ra ngoài nên M chia hết cho 5.