tìm GTNN:
a)A=3|1-2x|-5
Tìm GTNN:
a) A= |x-1| + |x-2| + |x-3| + ... + |x-99|
b) B = |2x-3|+ |x-6| + |x+1|
2. Tìm GTNN:
a) P=3|2x+5|-7 b) Q = |x-3|+|x-5|
c) (2x-3)2 - 14 d) H = (2x-y)2+|x-3|+7
a: Ta có: \(3\left|2x+5\right|\ge0\forall x\)
\(\Leftrightarrow3\left|2x+5\right|-7\ge-7\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{5}{2}\)
c: ta có: \(\left(2x-3\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(2x-3\right)^2-14\ge-14\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)
tim GTLN: D=-3-/2x+4/
tìm GTNN:A=3*/1-2x/-5
\(D=-3-\left|2x+4\right|\)
\(\left|2x+4\right|\ge0\forall x\)
\(D=-3-\left|2x+4\right|\le3\)
Dấu "=" xảy ra khi:
\(\left|2x+4\right|=0\Rightarrow x=-2\)
\(A=3\left|1-2x\right|-5\)
\(\left|1-2x\right|\ge0\Rightarrow3\left|1-2x\right|\ge0\forall x\)
\(A=3\left|1-2x\right|-5\ge-5\)
Dấu "=" xảy ra khi:
\(3\left|1-2x\right|=0\Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\)
Tìm GTLN, GTNN:
a, \(y=4\sin^2x-4\sin x+3\).
b, \(y=\cos^2x+2\sin x+2\).
c, \(y=\sin^4x-2\cos^2x+1\).
a.
Tìm min:
$y=(4\sin ^2x-4\sin x+1)+2=(2\sin x-1)^2+2$
Vì $(2\sin x-1)^2\geq 0$ với mọi $x$ nên $y=(2\sin x-1)^2+2\geq 0+2=2$
Vậy $y_{\min}=2$
----------------
Mặt khác:
$y=4\sin x(\sin x+1)-8(\sin x+1)+11$
$=(\sin x+1)(4\sin x-8)+11$
$=4(\sin x+1)(\sin x-2)+11$
Vì $\sin x\in [-1;1]\Rightarrow \sin x+1\geq 0; \sin x-2<0$
$\Rightarrow 4(\sin x+1)(\sin x-2)\leq 0$
$\Rightarrow y=4(\sin x+1)(\sin x-2)+11\leq 11$
Vậy $y_{\max}=11$
b.
$y=\cos ^2x+2\sin x+2=1-\sin ^2x+2\sin x+2$
$=3-\sin ^2x+2\sin x$
$=4-(\sin ^2x-2\sin x+1)=4-(\sin x-1)^2\leq 4-0=4$
Vậy $y_{\max}=4$.
---------------------------
Mặt khác:
$y=3-\sin ^2x+2\sin x = (1-\sin ^2x)+(2+2\sin x)$
$=(1-\sin x)(1+\sin x)+2(1+\sin x)=(1+\sin x)(1-\sin x+2)$
$=(1+\sin x)(3-\sin x)$
Vì $\sin x\in [-1;1]$ nên $1+\sin x\geq 0; 3-\sin x>0$
$\Rightarrow y=(1+\sin x)(3-\sin x)\geq 0$
Vậy $y_{\min}=0$
c.
$y=\sin ^4x-2\cos ^2x+1=\sin ^4x-2(1-\sin ^2x)+1$
$=\sin ^4x+2\sin ^2x-1$
$=(\sin ^4x-1)+(2\sin ^2x-2)+2$
$=(\sin ^2x-1)(\sin ^2x+1)+2(\sin ^2x-1)+2$
$=(\sin ^2x-1)(\sin ^2x+3)+2$
Vì $\sin x\in [-1;1]$ nên $\sin ^2x\leq 1$
$\Rightarrow (\sin ^2x-1)(\sin ^2x+3)\leq 0$
$\Rightarrow y=(\sin ^2x-1)(\sin ^2x+3)+2\leq 2$
Vậy $y_{\max}=2$
------------------------------------------
$y=\sin ^4x+2\sin ^2x-1=\sin ^2x(\sin ^2x+2)-1$
Vì $\sin ^2x\geq 0$ nên $\sin ^2x(\sin ^2x+2)\geq 0$
$\Rightarrow y=\sin ^2x(\sin ^2x+2)-1\geq 0-1=-1$
Vậy $y_{\min}=-1$
Tìm GTNN:a,A=3|2x+1|-2
b,B=1/3-|x-2| với B>0
Tìm GTLN:a,A=15-3|x-7|
b,B=1/2|x-2|+5
Tìm GTLN
a) Ta có: A = 15 - 3 | x - 7 |
Để A đạt GTLN khi 3 | x - 7 | đạt GTNN
\(\Rightarrow3\left|x-7\right|=0\Rightarrow\left|x-7\right|=0\Rightarrow x-7=0\Rightarrow x=7\)
Vậy để biểu thức đạt GTLN khi A = 15 và x = 7
3. Tìm GTLN, GTNN:
a) \(y=2\sin^2x+3\sin x\cos x-2\cos^2x+5\)
b) \(y=\dfrac{3\sin x-\cos x+1}{\sin x-2\cos x+4}\)
c) \(y=\dfrac{2\left(x^2+6xy\right)}{1+2xy+y^2}\) biết x, y thay đổi thỏa mãn \(x^2+y^2=1\)
a.
\(y=\dfrac{3}{2}sin2x-2\left(cos^2x-sin^2x\right)+5=\dfrac{3}{2}sin2x-2cos2x+5\)
\(=\dfrac{5}{2}\left(\dfrac{3}{5}sin2x-\dfrac{4}{5}cos2x\right)+5=\dfrac{5}{2}sin\left(2x-a\right)+5\) (với \(cosa=\dfrac{3}{5}\))
\(\Rightarrow-\dfrac{5}{2}+5\le y\le\dfrac{5}{2}+5\)
b.
\(\Leftrightarrow y.sinx-2y.cosx+4y=3sinx-cosx+1\)
\(\Leftrightarrow\left(y-3\right)sinx+\left(1-2y\right)cosx=1-4y\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(\left(y-3\right)^2+\left(1-2y\right)^2\ge\left(1-4y\right)^2\)
\(\Leftrightarrow11y^2+2y-9\le0\)
\(\Leftrightarrow-1\le y\le\dfrac{9}{11}\)
c.
Do \(x^2+y^2=1\Rightarrow\) đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\)
\(\Rightarrow y=\dfrac{2\left(sin^2a+6sina.cosa\right)}{1+2sina.cosa+cos^2a}=\dfrac{1-cos2a+6sin2a}{1+sin2a+\dfrac{1+cos2a}{2}}=\dfrac{2-2cos2a+12sin2a}{3+2sin2a+cos2a}\)
\(\Leftrightarrow3y+2y.sin2a+y.cos2a=2-2cos2a+12sin2a\)
\(\Leftrightarrow\left(2y-12\right)sin2a+\left(y+2\right)cos2a=2-3y\)
Theo điều kiện có nghiệm của pt bậc nhất theo sin2a, cos2a:
\(\left(2y-12\right)^2+\left(y+2\right)^2\ge\left(2-3y\right)^2\)
\(\Leftrightarrow y^2+8y-36\le0\)
\(\Rightarrow-4-2\sqrt{13}\le y\le-4+2\sqrt{13}\)
Tìm GTLN, GTNN:
a, \(y=4-3\cos2x\).
b, \(y=sin^2x+3\).
c, \(y=2\sin x\cos x+3\).
a: -1<=cos2x<=1
=>3>=-3cos2x>=-3
=>7>=-3cos2x+4>=1
=>7>=y>=1
\(y_{min}=1\) khi \(cos2x=1\)
=>2x=k2pi
=>x=kpi
\(y_{max}=-1\) khi cos2x=-1
=>2x=pi+k2pi
=>x=pi/2+kpi
b: \(0< =sin^2x< =1\)
=>\(3< =sin^2x+3< =4\)
=>3<=y<=4
y min=3 khi sin^2x=0
=>sinx=0
=>x=kpi
y max=4 khi sin^2x=1
=>cos^2x=0
=>x=pi/2+kpi
c: \(y=sin2x+3\)
-1<=sin2x<=1
=>-1+3<=sin2x+3<=1+3
=>2<=y<=4
\(y_{min}=2\) khi sin 2x=-1
=>2x=-pi/2+k2pi
=>x=-pi/4+kpi
y max=4 khi sin2x=1
=>2x=pi/2+k2pi
=>x=pi/4+kpi
Tìm gtnn:A=5xy^2+4xy-2x-2y+2020
Tìm GTNN:A=|x-1|+|x-2|+|x-3|+|x-4|
\(A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\)
\(A=\left|x-1\right|+\left|4-x\right|+\left|x-2\right|+\left|3-x\right|\)
+) Đặt \(B=\left|x-1\right|+\left|4-x\right|\ge\left|x-1+4-x\right|=3\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left(x-1\right)\left(4-x\right)=0\)
\(\Leftrightarrow1\le x\le4\)
+) Đặt \(C=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1\)
Dấu bằng xảy ra \(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow2\le x\le3\)
\(\Rightarrow A=\left|x-1\right|+\left|4-x\right|+\left|x-2\right|+\left|3-x\right|\ge4\)
Dấu '' = '' xảy ra
\(\Leftrightarrow\hept{\begin{cases}1\le x\le4\\2\le x\le3\end{cases}\Leftrightarrow2\le x\le3}\)
Vậy.................
Alan Walker bạn vào câu hỏi này tham khảo nha : https://olm.vn/hoi-dap/detail/211209248935.html
Hoặc bạn vào trong câu hỏi tương tự nha !
Tìm GTNN:A=|x-1|+|x-2|+|x-3|
B=|x-1|+|x+2|+|x-3|
Ta có : \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
\(\left|x-2\right|+\left|x-1\right|+\left|3-x\right|\ge\left|x-2\right|+\left|x-1+3-x\right|=\left|x-2\right|+\left|2\right|=\left|x-2\right|+2\)
Lại có : \(\left|x-2\right|\ge0=>\left|x-2\right|+2\ge2\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-2=0\\2\le x\le3\end{cases}}=>x=2\)(cái 2 bé hơn bằng x bé hơn bằng 3 là xảy ra khi |x-1|+|3-x|=|x-1+3-x| đó nha , cái phần này thì bạn xét trường hợp sẽ có : 2 <=x<=3)
Vậy A đạt giá trị nhỏ nhất là 2 khi x=2
Bài này thì mik nhớ phương pháp làm là ghép thằng |x-1| và |x-3| lại chứ mik ko rõ làm sao mà phải ghép nha sorry bạn , phần này hồi lớp 7 mik ko học kĩ lắm
B tương tự , chúc bạn học tốt !