Tìm các giá trị của a để đa thức sau nhận x=1 là một nghiệm.
ax2018-5ax2019-24x2020
Tìm các giá trị của a để đa thức sau nhận x = 1 là 1 nghiệm \(a^2x^{2014}-5ax^{2015}-24x^{2016}\)
Để đa thức này nhận x=1 làm nghiệm thì \(a^2\cdot1^{2014}-5a\cdot1^{2015}-24\cdot1^{2016}=0\)
\(\Leftrightarrow a^2-5a-24=0\)
=>(a-8)(a+3)=0
=>a=8 hoặc a=-3
Cho đa thức f(x) = x mũ 2 + mx + 2
a) Xác định m để f(x) nhận -2 là một nghiệm
b) Tìm tập hợp các nghiệm của f(x) ứng với giá trị vừa tìm được của m
a) Theo đề f(x) nhận -2 là nghiệm lấy -2 thay vào x ta có:
\(\left(-2\right)^2-2m+2=0\)
\(\Rightarrow4-2m+2=0\)
\(\Rightarrow6-2m=0\)
\(\Rightarrow2m=6\)
\(\Rightarrow m=3\)
b) Tìm được m ta có: \(f\left(x\right)=x^2+3x+2\)
\(\Rightarrow x^2+3x+2=0\)
\(\Rightarrow x^2+2x+x+2=0\)
\(\Rightarrow x\left(x+2\right)+\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm của f(x) là: \(S=\left\{-2;-1\right\}\)
1. Cho đa thức:
f(x) = x2+m.x+2
a) Xác định m để f(x) nhận -2 là 1 nghiệm
b) Tìm tập hợp các nghiệm của f(x) ứng với giá trị vừa tìm được của m
Cho đa thức f(x) = x mũ 2 + mx + 2 .
a) Xác định m để f(x) nhận (-2) làm một nghiệm
b) Tìm tập hợp các nghiệm của f(x) ứng với giá trị vừa tìm được của m
a) ( - 2 )2 + m . ( - 2 ) + 2 = 0 \(\Leftrightarrow\)m = 3
b) f(x) = x2 + 3x + 2
f(x) có tổng bằng các hệ số bậc chẵn bằng tổng các hệ số bậc lẻ nên f(x) nhận (-1) làm một nghiệm. Như vậy f(x) có 2 nghiệm là (-2) (Theo câu a) và ( -1) ngoài ra không còn nghiệm nào khác vì đa thức bậc hai có nhiều nhất là 2 nghiệm
Do đó tập hợp các nghiệm của f(x) là S = ( -1; -2 )
Cho đa thức : f(x) = x2 + mx +2
a, Xác định m để f(x) nhận -2 làm một nghiệm
b, tìm tập hợp các nghiệm của f(x) ứng vs giá trị m tìm đc
a, Thay x = -2, ta có :
f(-2) = (-2 )2 + ( m . -2 ) + 2 = 0
4 + ( -2m ) + 2 = 0
4 - 2m = -2
2m = 6 \(\Rightarrow\)m = 3
b, m = 3 \(\Rightarrow\)f(x) = x2 + 3x + 2
f(x) = 0
\(\Leftrightarrow x^2+3x+2=0\)
\(\Leftrightarrow x^2+2x+x+2=0\)
\(\Leftrightarrow x\left(2+x\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\x=-2\end{cases}}\)
a) (-2)+m.(-2)+2=0 <=> m=3 b) f(x)=x2+3x+2
f(x) có tổng các hệ số bậc chẵn bằng tổng các hệ số bậc lẻ nên f(x) nhận -1 làm một nghiệm.Như vậy f(x) có 2 nghiệm là -2 (theo câu a) và -1 ngoài ra ko còn nghiệm nào khác vì đa thức bậc hai có nhiều nhất là hai nghiệm.Do đó tập hợp các nghiệm của f(x) là S={-1:-2}
a, Ta có :
\(f\left(-2\right)=\left(-2\right)^2+m\left(-2\right)+2\)
\(=4-2m+2=6-2m\)
Đặt \(6-2m=0\)
\(\Leftrightarrow2m=6\Leftrightarrow m=3\)
b, Ta có : \(x^2+3x+2=0\)
\(3^2-4.2=9-8>0\)
Suy ra : \(x_1=\frac{-3+1}{2}=-1;x_2=\frac{-3-1}{2}=-2\)
Tìm các cặp giá trị x, y để các đa thức sau nhận giá trị bằng 0: 2x + y – 1
Ta có: 2x + y – 1 = 0 ⇔ 2x + y = 1
Có vô số giá trị của x và y để biểu thức trên xảy ra
Các cặp giá trị có dạng (x ∈R, y = 1 – 2x)
Chẳng hạn: (x = 0; y = 1); (x = 1; y = -1)
Cho đa thức: P(x)=\(x^2+mx-9\)( m là tham số)
a) tìm giá trị của m để x=1 là nghiệm của đa thức
b) Khi m=0 tìm tất cả nghiệm của đa thức P(x)
c) Khi m=0, tìm giá trị nhỏ nhất của đa thức P(x)
Tìm giá trị của m để đa thức sau nhận x-1 là nghiệm :
\(m^2x^{2013}-13mx^{2014}+36x^{2015}\)
Ta có: \(m^2.\left(x-1\right)^{2013}-13.m.\left(x-1\right)^{2014}+36.\left(x-1\right)^{2015}=0\)
\(m^2.\left(x-1\right)^{2013}-13.m.\left(x-1\right)^{2014}+36.\left(x-1\right)^{2015}=0\)
cho đa thức f(x)= x2+mx+4
a) Xác định m để f(x) nhận 4 làm một nghiệm
b) Tìm nghiệm của f(x) ứng với giá trị vừa tìm được của m