Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Andy Trần
Xem chi tiết
Tuan Dat
Xem chi tiết
Sáng
14 tháng 10 2018 lúc 19:38

Sửa đề: Cho \(x+y=a;x^2+y^2=b;x^3+y^3=c\)

Chứng minh: \(a^3-2ab+2c=0\)

Giải:

Ta có:

\(a^3-3ab+2c=\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)

\(=x^3+y^3+3xy\left(x+y\right)-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)

\(=3\left(x^3+y^3\right)+3\left(x+y\right)\left(xy-x^2-y^2\right)=3\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(x+y\right)\left(xy-x^2-y^2\right)\)

\(=3\left(x+y\right)\left(x^2-xy+y^2+xy-x^2-y^2\right)=3\left(x+y\right).0\)

\(=0\) (đpcm)

phạm nga
Xem chi tiết
Nguyễn Thị Hồng Nhung
9 tháng 9 2017 lúc 10:48

\(a+b+c=0\)

=>\(a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3a^2c+6abc=0\)

=>\(a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

=>\(a^3+b^3+c^3+3\left(-a\right)\left(-b\right)\left(-c\right)=0\)

=>\(a^3+b^3+c^3=3abc\left(đpcm\right)\)

linh nguyen ngoc
Xem chi tiết
hki Qqwwqe
26 tháng 8 2018 lúc 7:54

a) sau khi nhân vô + rút gọn ( câu này gg có á)

P = a3 + b3 + c3 - 3abc

b) a3 + b3 + c3 = 3abc?

a3 + b3 + c3 - 3abc = 0

theo câu b)

(a + b + c)(a2 + b2 + c2 - ab - bc - ca) =0

\(\Rightarrow\) a+b+c=0 hoặc

a2 + b2 + c2 - ab - bc -ca = 0

a2 - 2ab +b2 +b2 - 2bc + c2 + c2 - 2ac +a2 =0

(a-b)2 + (b-c)2 + (c-a)2 = 0

\(\Rightarrow\) a=b=c

Ma Sói
Xem chi tiết
Akai Haruma
4 tháng 8 2018 lúc 10:20

Lời giải:

Không biết số liệu góc của $BAC$ đã đúng chưa nhưng mình có thể chỉ hướng giải này cho em.

Kẻ $BH$ vuông góc với $AC$

Khi đó ta có:

\(BH=a\sin A\)

\(AH=a\cos A\)\(\Rightarrow CH=AC-AH=a-a\cos A\)

Áp dụng định lý Pitago cho tam giác vuông $BHC$ ta có:
\(BC^2=BH^2+CH^2\)

\(\Rightarrow b^2=(a\sin A)^2+(a-a\cos A)^2\)

\(b^2=a^2\sin ^2A+a^2+a^2\cos ^2A-2a^2\cos A\)

\(b^2=a^2(\sin ^2A+\cos ^2A)+a^2-2a^2\cos A\)

\(b^2=a^2+a^2-2a^2\cos A=2a^2-2a^2\cos A=2a^2(1-\cos A)\) (nhớ rằng tổng bình phương của sin và cos một góc bất kỳ thì bằng 1)

\(\Rightarrow b=a\sqrt{2(1-\cos A)}\)

Thay vào :

\(a^3+b^3=a^3(1+\sqrt{8(1-\cos A)^3})\)

\(3ab^2=6a^3(1-\cos A)\)

Nếu $A=20^0$ như bài đã cho thì ta thấy \(a^3+b^3\neq 3ab^2\) .

Ma Sói
4 tháng 8 2018 lúc 9:47

Akai Haruma thầy giúp em với

Edogawa Conan
Xem chi tiết
Hồng Quang
27 tháng 3 2018 lúc 21:20

Được bạn nhé :"))))

Ủng hộ mình = cách theo dõi mình nha

TM Vô Danh
27 tháng 3 2018 lúc 21:24

a+b+c=0

\(\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3a^2b+3ab^2+3a^2c+3ac^2+3b^2c+3bc^2+6abc=0\)

\(\Leftrightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3a^2c+3ac^2+3abc\right)+\left(3bc^2+3b^2c+3abc\right)-3abc=0\)\(\Leftrightarrow a^3+b^3+c^3+3ab\left(a+b+c\right)+3ac\left(a+b+c\right)+3bc\left(a+b+c\right)-3abc=0\)\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

mk ko chắc cách bn đúng nhưng cách của mk là phù hợp nhất đó

Akai Haruma
28 tháng 3 2018 lúc 14:34

Không nên chứng minh như thế này nhé. Ở ngay phần \(a+b=\frac{3abc}{-3ab}\) đã sai sót vì bạn không tính đến trường hợp \(a=0\) hoặc $b=0$ đã thực hiện phép chia như vậy.

Sử dụng hằng đẳng thức: \((a+b)^3=a^3+b^3+3ab(a+b)\) ta có:

\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3\)

Vì \(a+b+c=0\Rightarrow a+b=-c\). Thay vào biểu thức trên:

\((a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=-c^3+3abc+c^3=3abc\)

Do đó:

\(a^3+b^3+c^3=3abc\)

Hồ Quế Ngân
Xem chi tiết
Hà Thị Quỳnh
25 tháng 7 2016 lúc 11:32

1, 

\(a,7x-6x^2-2=-6x^2+7x-2=-6x^2+3x+4x-2\)

\(=-3x\left(2x-1\right)+2\left(2x-1\right)=\left(2x-1\right)\left(2-3x\right)\)

\(b,2x^2+3x-5=2x^2-2x+5x-5\)

\(=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)

\(c,16x-5x^2-3=-5x^2+x+15x-3\)

\(=-x\left(5x-1\right)+3\left(5x-1\right)=\left(5x-1\right)\left(3-x\right)\)

2,

\(a+b+c=0=>a+b=-c=>\left(a+b\right)^3=\left(-c\right)^3\)

\(=>a^3+b^3+3a^2b+3ab^2=-c^3\)

\(=>a^3+b^3+c^3=-3ab\left(a+b\right)\)

\(=>a^3+b^3+c^3=-3ab\left(-c\right)=3abc\)(vì a+b=-c)

Đường Quỳnh Giang
3 tháng 9 2018 lúc 9:17

\(2x^2+3x-5\)

\(=2x^2-2x+5x-5\)

\(=2x\left(x-1\right)+5\left(x-1\right)\)

\(=\left(x-1\right)\left(2x+5\right)\)

Ngọc Anh Dũng
Xem chi tiết
zZz Cool Kid_new zZz
28 tháng 7 2019 lúc 17:30

\(a^3-3ab+2c\)

\(=\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)

\(=x^3+3x^2y+3xy^2+y^3-3x^3-3x^2y-3xy^2-3y^3+2x^3+2y^3\)

\(=0\)

Đức Lộc
28 tháng 7 2019 lúc 17:34

Có: x + y = a <=> (x + y)3 = a3

                            3ab = 3(x + y)(x2 + y2)

                            2c = 2(x3 + y3)

Thay vào biểu thức ta được:

a3 - 3ab + 2c = (x + y)3 - 3(x + y)(x2 + y2) + 2(x3 + y3)

a3 - 3ab + 2c = x3 + y3 + 3x2y + 3xy2 - 3x3 - 3xy2 - 3x2y - 3y3 + 2x3 + 2y3

a3 - 3ab + 2c = 0 (đpcm)

Rose
28 tháng 7 2019 lúc 17:42

Ta có:

\(a^3-3ab+2c\)

\(=\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)

\(=x^3+3x^2y+3xy^2+y^3-\left(3x+3y\right)\left(x^2+y^2\right)+2x^3+2y^3\)

\(=x^3+3x^2y+3xy^2+y^3-3x^3-3xy^2-3x^2y-3y^3+2x^3+2y^3\)

\(=0\)(đpcm)

Diệp Băng Nhi
Xem chi tiết
T.Thùy Ninh
9 tháng 6 2017 lúc 8:43

Ta có :

\(a+b+c\Rightarrow a+b=-c\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\)\(=a^3+3a^2b+3ab^2+b^3+c^3=0\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)\(=a^3+b^3+c^3=-3ab.-c\)

\(=a^3+b^3+c^3=3abc\Rightarrowđpcm\)

Nguyễn Tấn Dũng
9 tháng 6 2017 lúc 8:36

Ta cm \(a^3+b^3+c^3=3abc\) là đúng khi \(a+b+c=0\)

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\) \(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\) \(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\) \(\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b+c\right)\)

\(\Leftrightarrow\) \(\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(a+b\right)c-3ab\right]=0\)(điều này đúng vì a+b+c=0)

\(\Rightarrow\) \(a^3+b^3+c^3=3abc\)