cho tỉ lệ thức a/b = b/c
cmr : \(\frac{3ab}{3cd}=\frac{2a^2-3b^2}{2c^2-3d^2}\)
bài giải nhé
Cho tỉ lệ thức:\(\frac{a}{b}=\frac{c}{d}.Chứngminh:\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\). Chứng minh: \(\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)
Bạn tham Khảo: https://hoc24.vn/hoi-dap/question/230602.html
Cho tỉ lệ thức a/b=c/d.chưng minh: \(\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}CM\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)với điều kiện mẫu thức xác định
Đặt \(\frac{a}{b}=\frac{c}{d}=k=>a=bk,c=dk\)
\(\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2\left(bk^2\right)-3bkb+5b^2}{2b^2+3bkb}=\frac{2b^2.k^2-3kb^2+5b^2}{2b^2+3b^2.k}\)\(=\frac{b^2\left(2k^2-3k+5\right)}{b^2\left(2+3k\right)}=\frac{2k^2-3k+5}{2+3k}=\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)\(=\frac{2\left(dk\right)^2-3dkd+5d^2}{2d^2+3dkd}=\frac{2d^2k^2-3d^2k+5d^2}{2d^2+3dkd}\)
Tương tự nhóm tiếp là ra
=>bằng nhau
cho tỉ lệ thức :
\(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\)
CMR \(\frac{a}{b}=\frac{c}{d}\)
cho tỉ lệ thức :
\(\frac{a}{b}=\frac{c}{d}\)
CMR
a)\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
b)\(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)
Cho dãy tỉ số :\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
CMR \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Cho tỉ lệ thức : \(\frac{a}{b}=\frac{c}{d}\). Chứng minh : \(\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2c^2-3cd+5d^2}{2d^2+3cd}\) . Với điều kiện mẫu thức xác định.
\(\frac{a}{b}=\frac{c}{d}\Rightarrow a=bk;c=dk\)
\(\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2b^2k^2-3b^2k+5b^2}{2b^2+3b^2k}=\frac{b^2\left(2k^2-3k+5\right)}{b^2\left(2+3k\right)}=\frac{2k^2-3k+5}{3k+2}\)
\(\frac{2c^2-3cd+5d^2}{2d^2+3cd}=\frac{2d^2k^2-3d^2k+5d^2}{2d^2+3d^2k}=\frac{d^2\left(2k^2-3k+5\right)}{d^2\left(2+3k\right)}=\frac{2k^2-3k+5}{3k+2}\)
nên 2 phân số trên bằng nhau (đpcm)
Đặt: \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có : \(\frac{2a^2-3ab+5b^2}{2b^2+3ab}\)
<=> \(\frac{2b^2k^2-3b^2k+5b^2}{2b^2+3b^2k}\)
<=> \(\frac{b^2\left(2k^2-3k+5\right)}{b^2\left(2+3k\right)}\)
<=> \(\frac{2k^2-3k+5}{2+3k}\left(1\right)\)
Ta có: \(\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)
<=> \(\frac{2d^2k^2-3d^2k+5d^2}{2d^2+3d^2k}\)
<=> \(\frac{d^2\left(2k^2-3k+5\right)}{d^2\left(2+3k\right)}\)
<=> \(\frac{2k^2-3k+5}{2+3k}\left(2\right)\)
Từ 1 và 2 => đpcm
cho\(\frac{a}{b}=\frac{c}{d}\) chứng minh rằng:
a, \(\frac{2a+3b}{3a-4b}=\frac{2c+3d}{3c-4d}\)
b, \(\frac{2a^2-3ab+4b^2}{2b^2+5ab}=\frac{2c^2-3cd+4d^2}{2d^2+5cd}\)
ta cs a/b=c/d=>a/c=b/d
=>2a+3b/2c+3d=3a-4b/3c-4d
=>2a+3b/3a-4b=2c+3d/3c-4d
=>bai toan dc c/m
Cau b tuong tu nha ban
don't forget tick me
a) Ta có \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}\) (1).
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{2a+3b}{2c+3d}=\frac{3a-4b}{3c-4d}.\)
\(\Rightarrow\frac{2a+3b}{3a-4b}=\frac{2c+3d}{3c-4d}\left(đpcm\right).\)
Chúc bạn học tốt!
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng ta có các tỉ lệ thức sau (giả thiết các tỉ lệ thức để có nghĩa)
a) \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
b) \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
c) \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
https://bingbe.com/search?category=question&q=Cho%20t%E1%BB%89%20l%E1%BB%87%20th%E1%BB%A9c%20a%20%2Fb%20%3D%20c%20%2Fd%20.%C2%A0Ch%E1%BB%A9ng%20minh%20c%C3%B3%20t%E1%BB%89%20l%E1%BB%87%20th%E1%BB%A9c%20sau%20%3A%0A%0A(%20a%20%2B%20c%C2%A0)2%C2%A0%2F%20(%20b%20%2B%20d%20)2%C2%A0%3D%20a2%C2%A0%20%2B%C2%A0%C2%A0c2%C2%A0%2F%20b2%20%C2%A0%2B%20d%C2%A02%C2%A0%0A%0A(%20Gi%E1%BA%A3%20thi%E1%BA%BFt%20c%C3%A1c%20t%E1%BB%89%20s%E1%BB%91%20%C4%91%E1%BB%81u%20c%C3%B3%20ngh%C4%A9a%20)%C2%A0%0A%0A%C2%A0
Xem ở lick này nhé (mình gửi cho)
Học tốt!!!!!!!!!!!!!
@@ chị linh Link dài vậy giải lun phải hơn không
a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{2a}{2c}=\frac{3b}{3d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a-3b}{2c-3d}=\frac{2a+3b}{2c+3d}\)
\(\Rightarrow\frac{2a+3b}{2c-3d}=\frac{2c+3d}{2c-3b}\left(đpcm\right)\)
Cho tỉ lệ thức \(\frac{a}{c}=\frac{c}{b}\) chứng minh rằng:
a)\(\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\)
b)\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)