chứng minh: a+4b chia hết cho 13 thì 10a+b chia hết cho 13
Chứng minh rằng: nếu 10a+b chia hết cho 13 thì a+4b chia hết cho 13
ta có:\(10a+b⋮13\Rightarrow40a+4b⋮13\)
\(\Leftrightarrow39a+\left(a+4b\right)⋮13\)
mà\(39a⋮13\Rightarrow a+4b⋮13\left(đpcm\right)\)
a) Chứng tỏ 2x + 3y chia hết cho 17 thì 9x + 5y chia hết chia hết cho 17
b) Cho biết a + 4b chia hết cho 13( a,b thuộc N) Chứng minh 10a + b chia hết 13
Cho a, b thuộc N . Chứng minh: Nếu a+4b chia hết cho 13 thì 10a+b chia hết cho 13
Nếu a + 4b chia hết cho 13 -> 10a + 40b chia hết cho 13 (1).
Lấy (1) - 39b (luôn chia hết cho 13) đc 10a +b
\(\Rightarrow\) 10a + b chia hết cho 13. (đpcm)
Ngược lại cũng tương tự.
a+4b chia hết cho 13
=>10(a+4b)chia hết cho 13
=>10a+40bchia hết cho 13 (1)
giả sử 10a+b chia hết cho 13 (2)
từ (1)và (2)
=>(10a+40b)-(10a+40b)chia hết cho 13
=>10a+40b-10a-40b chia hết cho 13
=>39a chia hết cho 13
=>13(3a)chia hết cho 13(thỏa mãn)☺
Nếu a + 4b chia hết cho 13 -> 10a + 40b chia hết cho 13 (1).
Lấy (1) - 39b (luôn chia hết cho 13) đc 10a +b
⇒ 10a + b chia hết cho 13. (đpcm)
\
a) Giải
Ta có:
a + 5b ⋮ 7 ⇒10(a + 5b) ⋮ 7 ⇒10a + 50b ⋮ 7
Vì 49 ⋮ 7 ⇒49b ⋮ 7
⇒10a + (50b - 49b) ⋮ 7
⇒10a + b ⋮ 7
Vậy 10a + b ⋮ 7
b) Giải
Ta có:
a + 4b ⋮ 13 ⇒10(a + 4b) ⋮ 13 ⇒10a + 40b ⋮ 13
VÌ 39 ⋮ 13 ⇒39b ⋮ 13
⇒10a + (40b - 39b) ⋮ 13
⇒10a + b ⋮ 13
Vậy 10a + b ⋮ 13
Chứng minh: nếu a + 4b chia hết cho 13 (a, b thuộc số tự nhiên ) thì 10a + b chia hết cho 13
\(10a+b=\left(10a+40b\right)-39b=10\left(a+4b\right)-39b\)
ta có: a+4b chia hết cho 13 => 10(a+4b) chia hết cho 13
39b=13.3b => chia hết cho 13
=> 10a+b chia hết cho 13
bài 1: chứng minh rằng
nếu 10a + b chia hết cho 13 thì a + 4b chia hết cho 13. Với a,b là các số tự nhiên.
Do \(\left(10a+b\right)⋮13\Rightarrow10a+b=13k\left(k\in N\right)\)
\(\Rightarrow b=13k-10a\)
\(\Rightarrow a+4b=a+4.\left(13k-10a\right)\)
\(=a+52k-40a\)
\(=52k-39a\)
\(=13\left(4k-3a\right)⋮13\)
Vậy \(\left(10a+b\right)⋮13\Rightarrow\left(a+4b\right)⋮13\)
Cho 10a + b chia hết cho 13 ; Chứng minh a + 4b chia hết cho 13
10a+b chia hết cho 13<=>a+4b chia hết cho 13
cho a,b thuộc tập hợp số tự nhiên
Biết a + 4b chia hết cho 13. Chứng minh 10a + b chia hết cho 13
Biết 3a + 2b chia hết cho 17. Chứng minh 10a + b chia hết cho 17
Biết a -5b chia hết cho 17. Chứng minh 10a + b chia hết cho 17
cho 10a+b chia hết cho 13 .Chứng minh rằng a+4b chia hết cho 13
10a + b chia hết cho 13 khi a = 1 và b = 3
a = 2 đồng thời b = a x 3
a = 3 thì b = a x 3 = 3 x 3 = 9
b luôn = a x 3
xét a + 4 b = a + 4 x 3a
= a + 12a = 13a
và 13a luôn chia hết cho 13
vậy là với b = a x3 thì 10a + b chia hết cho 13 và a + 4b cũng chia hết cho 13
Bạn xem trong câu hỏi tương tự, nhiều bạn đã hỏi câu này rồi. Dưới đây là một lời giải:
Ta có:
4(10a + b) - (a + 4b) = 39a
Hiệu vế trái chia hết cho 39 nên chia hết cho 13, mà theo giả thiết 1a + b chia hết cho 13 nên số (a + 4b) cũng chia hết cho 13.
phải khẳng định là 10a + b chia hết cho 13 khi b = 3a
khi đó 10a + b = 13a chia hết cho 13
đồng thời a + 4b cũng = 13a sẽ luôn chia hết cho 13
Mình thấy GV làm như vậy chưa thuyết phục
4(10a + b ) - (a + 4b ) = 39a
lấy vế trái nhân 4 trừ vế phải chẳng nói điều gì ,còn b thì mất đi đâu