rút gọn biểu thức P=x+1/X^2-1 - X^2+2/X^3-1 - x+1/X^2+x+1 với x khác 1
Bài 1: Cho biểu thức: A= (x^2-3/x^2-9 + 1/x-3):x/x+3
a, Rút gọn A.
b, Tìm các giá trị của x để A = 3
Bài 2: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) Với x khác 2 và -2
a, Rút gọn biểu thức,
b, Tìm các giá trị nguyên của x để A nhận giá trị nguyên.
Bài 3: Cho biểu thức A = 2x/x+3 + x+1/x-3 + 3x-11x/9-x^2, với x khác 3 , -3
a, Rút gọn biểu thức A.
b, Tính giá trị của A khi x=5
c, Tìm gái trị nguyên của x để biểu thức A có giá trị nguyên.
Bài 4: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) , với x khác 2 .-2
a, Rút gọn A.
b, Tính giá trị của A khi x = -4
c, Tìm các giá trị nguyên của x để A có giá trị là số nguyên.
Bài 1:
a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)
b: Để A=3 thì 3x-9=x+1
=>2x=10
hay x=5
Bài 2:
a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)
\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)
b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{3;1;5;-1\right\}\)
Rút gọn biểu thức P = √x/ √x-2 /(x-2/x-4 - 1/ √x+2 với x>0;x khác 1, x khác 4
Cho biểu thức A= 1/x-2 + 1/x+2 + x²+1/x²-4 (với x khác +-2)
a) Rút gọn biểu thức
B) CMR với -2<x<2, x khác -1 thì phân thức có giá trị luôn âm
Cho biểu thức : M=1-2x/ (x+1)(x-2) + 1/ x+1 + 2/ (x-2) (với x khác -1, x khác 2). a, rút gọn biểu thức M . b, tìm tất cả các giá trị của x để -4M>0
Cho biểu thức B=1/x+√x + 2√x/x-1 - 1/x-√x với x>0 và x khác 1 .Rút gọn biểu thức
\(B=\dfrac{1}{x+\sqrt{x}}+\dfrac{2\sqrt{x}}{x-1}-\dfrac{1}{x-\sqrt{x}}\)
\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1+2x-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2x-2}{\sqrt{x}\left(x-1\right)}=\dfrac{2}{\sqrt{x}}\)
Cho biểu thức P=(2x^3-x^4-2x+1)/(4x^2-1)+(8x^2-4x+2)/(8x^3+1) với x khác 1/2; x khác -1/2
a,Rút gọn P
b,Tìm x để P>0
\(P=\dfrac{-x^4+2x^3-2x+1}{4x^2-1}+\dfrac{8x^2-4x+2}{8x^3+1}\)
\(=\dfrac{\left(1-x^2\right)\left(1+x^2\right)+2x\left(x^2-1\right)}{4x^2-1}+\dfrac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\dfrac{\left(1-x^2\right)\left(1+x^2-2x\right)}{4x^2-1}+\dfrac{2}{2x+1}\)
\(=\dfrac{\left(1-x^2\right)\left(x^2-2x+1\right)+4x-2}{4x^2-1}\)
cho biểu thức p = (4/x-1-7x+5/x^3-1):(1-x-4/x^2+x+1) (với x khác 1) a) rút gọn biểu thức
Với \(x\ne1\)ta có
\(P=\left(\frac{4}{x-1}-\frac{7x+5}{x^3-1}\right):\left(1-\frac{x-4}{x^2+x+1}\right)\)
\(=\left[\frac{4x^2+4x+4-7x-5}{\left(x-1\right)\left(x^2+x+1\right)}\right]:\left(\frac{x^2+x+1-x-4}{x^2+x+1}\right)\)
\(=\frac{4x^2-3x-1}{\left(x-1\right)\left(x^2+x+1\right)}:\frac{x^2-3}{x^2+x+1}=\frac{4x+1}{x^2-3}\)
cho biểu thức A=1/x-2+1/x+2+x^2+1/x^2-4 ( với x khác cộng trừ 2)
a) rút gọn biểu thức A
b) Chứng tỏ rằng với mọi x thỏa mãn -2<x<2, x khác -1 phân thức luôn có giá trị âm.
Cho biểu thức: x-\(\dfrac{x-1}{2}\) +\(\dfrac{x-1}{3}\) + \(\dfrac{x-1}{2016}\) = 0 (với x khác 3 và x khác -3) và ). a)Rút gọn biểu thức A.
b) Tính Q=x2-7x+2021 biết thỏa mãn A= \(-\dfrac{2}{3}\)
cho biểu thức a=(4/x-1):(1-x-3/x^2+x+1) với x khác 1 1 rút gọn a 2 tính giá trị a với x thỏa mãn x^4 -7x^2-4x+20=0
giúp mình với helppp
a: \(A=\left(\dfrac{4}{x}-1\right):\left(1-\dfrac{x-3}{x^2+x+1}\right)\)
\(=\dfrac{4-x}{x}:\dfrac{x^2+x+1-x+3}{x^2+x+1}\)
\(=\dfrac{4-x}{x}\cdot\dfrac{x^2+x+1}{x^2+4}=\dfrac{\left(4-x\right)\left(x^2+x+1\right)}{x\left(x^2+4\right)}\)
b: x^4-7x^2-4x+20=0
=>(x-2)^2(x^2+4x+5)=0
=>x=2
Khi x=2 thì \(A=\dfrac{\left(4-2\right)\left(4+2+1\right)}{2\left(4+4\right)}=\dfrac{7}{8}\)