Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bui hang trang
Xem chi tiết
hieu
Xem chi tiết
Phạm Hồng Mai
Xem chi tiết
Lê Song Phương
15 tháng 10 2023 lúc 22:06

 Trước tiên, ta cần chứng minh 2 bổ đề sau:

 Bổ đề 1: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó  \(ƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b\)

 Bổ đề 2: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó:\(ƯCLN\left(a,b\right)+BCNN\left(a,b\right)\ge a+b\)

 Chứng minh:

 Bổ đề 1: Đặt \(\left(a,b\right)=1\) (từ nay ta sẽ kí hiệu \(\left(a,b\right)=ƯCLN\left(a,b\right)\) và \(\left[a;b\right]=BCNN\left(a,b\right)\) cho gọn) \(\Rightarrow\left\{{}\begin{matrix}a=dk\\b=dl\end{matrix}\right.\left(\left(k,l\right)=1\right)\)

  Nên \(\left[a,b\right]=dkl\) \(\Rightarrow\left(a;b\right)\left[a;b\right]=dk.dl=ab\). Ta có đpcm.

 Bổ đề 2: Vẫn giữ nguyên kí hiệu như ở chứng minh bổ đề 1. Ta có \(k\ge1,l\ge1\) nên \(\left(k-1\right)\left(l-1\right)\ge0\)

 \(\Leftrightarrow kl-k-l+1\ge0\)

 \(\Leftrightarrow kl+1\ge k+l\)

 \(\Leftrightarrow dkl+d\ge dk+dl\)

 \(\Leftrightarrow\left[a,b\right]+\left(a,b\right)\ge a+b\) (đpcm)

Vậy 2 bổ đề đã được chứng minh.

a) Áp dụng bổ đề 1, ta có \(ab=\left(a,b\right)\left[a,b\right]=15.180=2700\) và \(a+b\le\left(a,b\right)+\left[a,b\right]=195\). Do \(b\ge a\) \(\Rightarrow a^2\le2700\Leftrightarrow a\le51\)

 Mà \(15|a\) nên ta đi tìm các bội của 15 mà nhỏ hơn 51:

  \(a\in\left\{15;30;45\right\}\)

 Khi đó nếu \(a=15\) thì \(b=180\) (thỏa)

 Nếu \(a=30\) thì \(b=90\) (loại)

 Nếu \(a=45\) thì \(b=60\) (thỏa)

 Vậy có 2 cặp số a,b thỏa mãn ycbt là \(15,180\) và \(45,60\)

Câu b làm tương tự.

Hoàng Tùng Lâm
15 tháng 10 2023 lúc 21:03

 Ko bt

Thanh Trà mun
15 tháng 10 2023 lúc 21:08

Tớ chịu🤔

Tô Xuân Khoa
Xem chi tiết
Nguyễn Thị Thương Hoài
16 tháng 12 2023 lúc 12:59

Theo bài ra ta có: a = 15.k; b = 15.d  (k;d) = 1 

⇒ a.b = 15.k.15.d ⇒a.b = 300.15

⇒ 15.k.15.d = 300.15 ⇒ k.d = 300.15:15:15 ⇒ k.d = 20

Mặt khác ta cũng có: 15.k + 15 = 15.d

                                15.(k + 1)  = 15d 

                                      k + 1    =  d ⇒ k = d - 1

Thay k = d - 1 vào k.d = 20 ta có: (d-1).d = 20 ⇒ (d-1).d = 4.5 ⇒ d = 5

           k = 5 - 1 = 4

Vậy a = 15.4 = 60; b = 60 + 15 = 75

Kết luận vậy (a;b)  =(60; 75)

 

 

 

 

Tô Xuân Khoa
Xem chi tiết
Trần Học
Xem chi tiết
Nguyễn Thị Diệu Ly
6 tháng 3 2021 lúc 22:14

vì BCNN(a,b)=300 và ƯCLN(a,b)=15

⇒a.b=300.15=4500

vì ƯCLN(a,b)=15 nên a=15m và b=15n(với ƯCLN(m,n)=1)

vì a+15=b⇒15m+15=15n

mà a.b=4500nên ta có: 15m.15n=4500

                                        15.15.m.n=4500

                                         \(15^2\).m.n=4500

                                          225.m.n=450

⇒m.n=20

⇒m=1 và n=20 hoặc m=4 và n=5

mà m+1=n⇒m=4 và n=5

vậy a=15.4=60 và b=15.5=75

trịnh phương anh
Xem chi tiết
Vũ Ngọc Diệp
Xem chi tiết
Phạm Huỳnh Khánh Ngọc
9 tháng 11 lúc 16:33

Ta có : 

a.b = 300. 15 = 4500 ( a ≥ b )

a = 15.m ; b = 15. n và UCLN(m,n) = 1 (m ≥ n)

Lại có :

a . b = 4500

15 .m . 15. n = 4500

225 . (m . n) = 4500

m.n = 20

Ta có bảng sau :

m |   5    |     20                             Thử lại : a + 15 = b                             a + 15 = b

n  |   4    |     1                                             60 + 15 = 75 ( chọn )            15 + 15 = 300 ( loại )

a  |   75  |      300                         Vậy (a,b ) = ( 75 ; 60 )

b  |    60 |       15

 

YUNNA
Xem chi tiết
Kiều Vũ Linh
15 tháng 3 2023 lúc 14:25

Do ƯCLN(a; b) = 15

\(\Rightarrow a=15k\left(k\in Z\right);b=15m\left(m\in Z\right)\)

\(a+15=b\Rightarrow15k+15=15m\)

\(\Rightarrow k+1=m\)

*) k = 1 \(\Rightarrow m=2\)

\(\Rightarrow a=15;b=30\Rightarrow BCNN\left(a;b\right)=30\) (loại)

*) \(k=2\Rightarrow m=3\Rightarrow a=30;b=45\Rightarrow BCNN\left(a;b\right)=90\) (loại)

*) \(k=3\Rightarrow m=4\Rightarrow a=45;b=60\Rightarrow BCNN\left(a;b\right)=180\) (loại)

*) \(k=4\Rightarrow m=5\Rightarrow a=60;b=75\Rightarrow BCNN\left(a;b\right)=300\) (nhận)

Vậy a = 60; b = 75