Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Hải Yến
Xem chi tiết
Đinh Đức Hùng
23 tháng 7 2017 lúc 14:11

Từ \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\) Áp dụng TC DTSBN ta có :

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{y}=1\Rightarrow x=y\\\frac{y}{z}=1\Rightarrow y=z\\\frac{z}{x}=1\Rightarrow z=x\end{cases}}\) \(\Rightarrow x=y=z\)

\(\Rightarrow A=\frac{x^{3333}.z^{6666}}{y^{9999}}=\frac{x^{3333}.x^{6666}}{x^{9999}}=\frac{x^{9999}}{x^{9999}}=1\)

Nguyễn Thị Hải Yến
21 tháng 9 2017 lúc 21:24

cảm ơn bạn nhiều

Nguyễn Thu Hà
Xem chi tiết
Trần Bình Như
Xem chi tiết
Phạm Hoàng Hải Anh
29 tháng 7 2019 lúc 9:08

ta có :\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)và x+y+z\(\ne\)0

Áp dụng dãy tỉ số = nhau ta có :

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

Khi đó : \(\frac{x}{y}=1\Leftrightarrow x=y\)

\(\frac{y}{z}=1\Leftrightarrow y=z\)

\(\frac{z}{x}=1\Leftrightarrow x=z\)

Suy ra : x=y=z

Ta có : \(\frac{x^{3333}.z^{6666}}{y^{9999}}=\frac{y^{3333}.y^{6666}}{y^{9999}}=\frac{y^{9999}}{y^{9999}}=1\)(vì x=y=z)

Vậy x3333.x6666/y9999=1 với thỏa mãn yêu cầu bài cho.

svtkvtm
29 tháng 7 2019 lúc 9:11

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{x+y+z}=1\left(x+y+z\ne0\right)\Rightarrow x=y=z\Rightarrow\frac{x^{3333}.z^{6666}}{y^{9999}}=\frac{z^{3333}.z^{6666}}{z^{9999}}=\frac{z^{9999}}{z^{9999}}=1\)

Phú Phan Đào Ngọc
Xem chi tiết
Nguyệt
1 tháng 11 2018 lúc 23:51

áp dụng t/c dãy ti số bằng nhau ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

\(\frac{x}{y}=1\Rightarrow x=y,\frac{y}{z}=1\Rightarrow y=z,\frac{z}{x}=1\Rightarrow z=x\left(1\right)\)

từ (1) => x=y=z

\(\frac{x^{3333}.y^{6666}}{z^{9999}}=\frac{z^{3333}.z^{6666}}{z^{9999}}=\frac{z^{9999}}{z^{9999}}=1\)

tth_new
2 tháng 11 2018 lúc 8:38

Theo tính chất dãy tỉ số bằng nhau: \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\Rightarrow x=y=z\)

Thay y và z bởi x (do x = y = z),ta được: \(\frac{x^{3333}.y^{6666}}{z^{9999}}=\frac{x^{3333}.x^{6666}}{x^{9999}}=\frac{x^{9999}}{x^{9999}}=1\)

Tẫn
2 tháng 11 2018 lúc 12:28

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

\(\Leftrightarrow x=y=z_{\left(1\right)}\)

\(_{\left(1\right)}\Rightarrow\frac{x^{3333}.y^{6666}}{z^{9999}}=\frac{z^{9999}}{z^{9999}}=1\)

pé anime
Xem chi tiết
Đỗ Văn Hoài Tuân
16 tháng 7 2015 lúc 20:30

Bài 1: a/b=b/c=c/a chứ không phải c/d

áp dụng tính chất dãy tỉ số bằng nhau, ta có: 

a/b=b/c=c/a=(a+b+c)/(b+c+a)=1

a/b=1 => a=b

b/c=1 => b=c

Vậy a=b=c

Vũ Ngọc Anh
Xem chi tiết
nguyễn xoan trà
Xem chi tiết
Đinh quang hiệp
8 tháng 5 2018 lúc 17:16

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z};\frac{1}{x}+\frac{1}{z}=-\frac{1}{y};\frac{1}{y}+\frac{1}{z}=-\frac{1}{x}\)

\(A=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\)

\(=\left(\frac{y}{x}+\frac{y}{z}\right)+\left(\frac{x}{y}+\frac{x}{z}\right)+\left(\frac{z}{x}+\frac{z}{y}\right)=y\left(\frac{1}{x}+\frac{1}{z}\right)+x\left(\frac{1}{y}+\frac{1}{z}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(=y\cdot-\frac{1}{y}+x\cdot-\frac{1}{x}+z\cdot-\frac{1}{z}=-1-1-1=-3\)

vậy A=-3

pro
Xem chi tiết
Trần Minh Hoàng
19 tháng 1 2021 lúc 19:03

Đẳng thức đã cho tương đương với:

\(\dfrac{x^2z+y^2z-z^3+y^2x+z^2x-x^3+z^2y+x^2y-y^3}{2yxz}=1\)

\(\Leftrightarrow x^3+y^3+z^3+2xyz-x^2y-y^2z-z^2x-xy^2-yz^2-zx^2=0\)

\(\Leftrightarrow\left(x+y-z\right)\left(y+z-x\right)\left(z+x-y\right)=0\Leftrightarrow z+x=y\) (Do x + y khác z và y + z khác x).

Từ đó P = 2y (Biểu thức của P phụ thuộc vào biến y).

pro
19 tháng 1 2021 lúc 19:30

Vậy từ giả thiết đó bạn có thể CMR P=0 đc k

Giúp mk ba mk đg cần gấp

Cấn Anh Khoa
Xem chi tiết