Giúp mình gaiir câu 21 22 nhanh với ạ
Làm dùm mình từ câu 1 đến 20 với ạ. GIẢI THÍCH CHI TIẾT DÙM MÌNH VỚI Ạ
Giúp mik gaiir câu 24 đến 38 đi ạ
24. Admission
28. memorialize
32. announcements
33. production
34. winner
38. sportsmanship
Câu 21 với 22 giúp mình với ạ
21.
\(\left\{{}\begin{matrix}SA\perp AB\\AC\perp AB\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAC\right)\)
E là trung điểm SA, F là trung điểm SB \(\Rightarrow\) EF là đường trung bình tam giác SAB
\(\Rightarrow EF||AB\Rightarrow EF\perp\left(SAC\right)\)
\(\Rightarrow EF=d\left(F;\left(SEK\right)\right)\)
\(SE=\dfrac{1}{2}SA=\dfrac{3a}{2}\) ; \(EF=\dfrac{1}{2}AB=a\)
\(SC=\sqrt{SA^2+AC^2}=a\sqrt{13}\Rightarrow SK=\dfrac{2}{3}SC=\dfrac{2a\sqrt{13}}{3}\)
\(\Rightarrow S_{SEK}=\dfrac{1}{2}SE.SK.sin\widehat{ASC}=\dfrac{1}{2}.\dfrac{3a}{2}.\dfrac{2a\sqrt{13}}{3}.\dfrac{2a}{a\sqrt{13}}=a^2\)
\(\Rightarrow V_{S.EFK}=\dfrac{1}{3}EF.S_{SEK}=\dfrac{1}{3}.a.a^2=\dfrac{a^3}{3}\)
\(AB\perp\left(SAC\right)\Rightarrow AB\perp\left(SEK\right)\Rightarrow AB=d\left(B;\left(SEK\right)\right)\)
\(\Rightarrow V_{S.EBK}=\dfrac{1}{3}AB.S_{SEK}=\dfrac{1}{3}.2a.a^2=\dfrac{2a^3}{3}\)
22.
Gọi D là trung điểm AB
Do tam giác ABC đều \(\Rightarrow CD\perp AB\Rightarrow CD\perp\left(SAB\right)\)
\(\Rightarrow CD=d\left(C;\left(SAB\right)\right)\)
\(CD=\dfrac{AB\sqrt{3}}{2}=a\sqrt{3}\) (trung tuyến tam giác đều)
N là trung điểm SC \(\Rightarrow d\left(N;\left(SAB\right)\right)=\dfrac{1}{2}d\left(C;\left(SAB\right)\right)=\dfrac{a\sqrt{3}}{2}\)
\(S_{SAB}=\dfrac{1}{2}SA.AB=a^2\sqrt{3}\) \(\Rightarrow S_{SAM}=\dfrac{1}{2}S_{SAB}=\dfrac{a^2\sqrt{3}}{2}\)
\(\Rightarrow V_{SAMN}=\dfrac{1}{3}.\dfrac{a\sqrt{3}}{2}.\dfrac{a^2\sqrt{3}}{2}=\dfrac{a^3}{4}\)
Lại có:
\(V_{SABC}=\dfrac{1}{3}SA.S_{ABC}=\dfrac{1}{3}.a\sqrt{3}.\dfrac{\left(2a\right)^2\sqrt{3}}{4}=a^3\)
\(\Rightarrow V_{A.BCMN}=V_{SABC}-V_{SANM}=\dfrac{3a^3}{4}\)
Các bạn ơi giúp mình với ạ mình cảm ơn các bạn rất nhìu mai mình nộp rồi giải nhanh giúp mình với ạ 🥺 Bài 1 cho tổng S=2+2²+2³.....+2²⁰¹⁰ Chứng minh rằng a S chia hết cho 15 b S chia hết cho 21 c S chia hết cho 35 d S chia hết cho 105 Bài 2 cho tổng A=12+18+24+x với x thuộc Z Tìm x để : a A chia hết cho 2 b A chia hết cho 3 mình cảm ơn nhiều ạ 😁
Bầi 2:
a: A=x+54
Để A chia hết cho 2 thì x chia hết cho 2
b: Để A chia hết cho 3 thì x chia hết cho 3
Giúp mình giải chi tiết câu 3 với 4 nhanh với ạ
3.
\(\overrightarrow{AB}=\left(4;2\right)=2\left(2;1\right)\)
Do đó đường thẳng AB nhận \(\left(-1;2\right)\) là 1 vtpt
4.
\(\overrightarrow{AB}=\left(-a;b\right)\)
\(\Rightarrow\) Đường thẳng AB nhận (b;a) là 1 vtpt
Giúp mình giải bài này với!
Chứng minh:
11;15 <1:21+1:22+1:23+..........+1:60<3:2
Ta có: A=1/21 + 1/22 + 1/23 + ... + 1/60
A= (1/21 + 1/22 + ... + 1/40) + (1/41 + 1/42 + ... + 1/60)
A < 1/20 * 20 + 1/40 * 20 = 1 + 1/2 = 3/2
Lại có: A = (1/21 + 1/22 + ... +1/40) + (1/41+ 1/42 + ... +1/60)
A > 1/40*20 + 1/60 * 20 = 1/2 + 1/3 = 5/6 > 11/15
==> 11/15 < 1/21 + 1/22 + ... + 1/60 < 3/2
Ta có: A=1/21 + 1/22 + 1/23 + ... + 1/60
A= (1/21 + 1/22 + ... + 1/40) + (1/41 + 1/42 + ... + 1/60)
A < 1/20 * 20 + 1/40 * 20 = 1 + 1/2 = 3/2
Lại có: A = (1/21 + 1/22 + ... +1/40) + (1/41+ 1/42 + ... +1/60)
A > 1/40*20 + 1/60 * 20 = 1/2 + 1/3 = 5/6 > 11/15
==> 11/15 < 1/21 + 1/22 + ... + 1/60 < 3/2
Giúp e làm chi tiết câu 21, 22 đi ạ
21.
Giới hạn đã cho hữu hạn khi và chỉ khi \(a=1\)
Khi đó:
\(\lim\limits_{x\rightarrow+\infty}\left(x-\sqrt{x^2+bx+2}\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2-\left(x^2+bx+2\right)}{x+\sqrt{x^2+bx+2}}=\lim\limits_{x\rightarrow+\infty}\dfrac{-bx-2}{x+\sqrt{x^2+bx+2}}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{-b-\dfrac{2}{x}}{1+\sqrt{1+\dfrac{b}{x}+\dfrac{2}{x^2}}}=\dfrac{-b}{2}\)
\(\Rightarrow-\dfrac{b}{2}=4\Rightarrow b=-8\)
\(\Rightarrow a+b=1-8=-7\)
22.
B sai, do các cạnh bên của chóp đều tạo với đáy các góc bằng nhau
Chỉ dùm mình câu 17 với ạ.
the people who are unable to see (những người không thể nhìn) = the blind (người mù nói chung)
Giúp mình giải câu 9 câu 10 nhanh với ạ
9.
Phương trình đường thẳng AB: \(3x-y-7=0\)
Trung điểm đoạn thẳng AB: \(I=\left(2;-1\right)\)
Trung trực đoạn AB vuông góc với AB có phương trình dạng: \(\left(\Delta\right):x+3y+m=0\)
Mà I thuộc \(I\in\Delta\Rightarrow2-3+m=0\Leftrightarrow m=1\)
\(\Rightarrow\Delta:x+3y+1=0\)
10.
Phương trình đường thẳng AB: \(y+4=0\)
Trung điểm đoạn thẳng AB: \(I=\left(2;-4\right)\)
Trung trực đoạn AB vuông góc với AB có phương trình dạng: \(\left(\Delta\right):x+m=0\)
Mà I thuộc \(I\in\Delta\Rightarrow2+m=0=0\Leftrightarrow m=-2\)
\(\Rightarrow\Delta:x-2=0\)