Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thao Le
Xem chi tiết
Vy trần
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 10 2021 lúc 10:48

\(b,N=\left(2x-1\right)^2-4\ge-4\\ N_{min}=-4\Leftrightarrow x=\dfrac{1}{2}\\ c,P=\left(2x-5\right)^2+6\left(2x-5\right)+9-4\\ P=\left(2x-5+3\right)^2-4=\left(2x-2\right)^2-4\ge-4\\ P_{min}=-4\Leftrightarrow x=1\\ d,Q=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\\ Q=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\\ Q_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Akai Haruma
23 tháng 10 2021 lúc 14:10

6a.

$M=x^2-x+1=(x^2-x+\frac{1}{4})+\frac{3}{4}$

$=(x-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}$

Vậy $M_{\min}=\frac{3}{4}$ khi $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$

Hương
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 2 2021 lúc 16:25

Câu 4:

D và F cùng nhìn AC dưới 1 góc vuông nên tứ giác ACDF nội tiếp

\(\Rightarrow\widehat{ADF}=\widehat{ACF}\) (cùng chắn AF)

Tương tự, ABDE nội tiếp \(\Rightarrow\widehat{ABE}=\widehat{ADE}\) (cùng chắn AE)

Lại có \(\widehat{ABE}=\widehat{ACF}\) (cùng phụ góc \(\widehat{A}\))

\(\Rightarrow\widehat{ADE}=\widehat{ADF}\) hay AD là phân giác góc \(\widehat{FDE}\)

./

Hoàn toàn tương tự, ta cũng có CF là phân giác \(\widehat{DFE}\Rightarrow\widehat{BFD}=\widehat{AFE}\)

Mà \(\widehat{AFE}=\widehat{BFK}\Rightarrow\widehat{BFK}=\widehat{BFD}\)

\(\Rightarrow\dfrac{BK}{BD}=\dfrac{FK}{FD}\) theo định lý phân giác

Đồng thời \(\dfrac{CK}{CD}=\dfrac{FK}{FD}\) (CF là phân giác ngoài góc \(\widehat{DFK}\))

\(\Rightarrow\dfrac{BK}{BD}=\dfrac{CK}{CD}\Rightarrow\dfrac{BK}{CK}=\dfrac{BD}{CD}\)

Qua B kẻ đường thẳng song song AC cắt AK và AD tại P và Q

Theo Talet: \(\dfrac{BK}{CK}=\dfrac{BP}{AC}\) đồng thời \(\dfrac{BD}{DC}=\dfrac{BQ}{AC}\)

\(\Rightarrow\dfrac{BP}{AC}=\dfrac{BQ}{AC}\Rightarrow BP=BQ\)

Mặt khác BP song song MF (cùng song song AC)

\(\Rightarrow\dfrac{MF}{BP}=\dfrac{AF}{AB}\) ; \(\dfrac{NF}{BQ}=\dfrac{AF}{AB}\) (Talet)

\(\Rightarrow\dfrac{MF}{BP}=\dfrac{NF}{BQ}\Rightarrow MF=NF\)

Nguyễn Việt Lâm
22 tháng 2 2021 lúc 16:26

Hình vẽ câu 4:

undefined

Nguyễn Việt Lâm
22 tháng 2 2021 lúc 16:28

Câu 5:

ĐKXĐ: \(-1\le x\le1\)

Đặt \(\sqrt{1+x}+\sqrt{1-x}=t>0\)

\(\Rightarrow t^2=1+x+1-x+2\sqrt{\left(1+x\right)\left(1-x\right)}=2+2\sqrt{1-x^2}\)

Do đó pt trở thành:

\(t.t^2=8\Leftrightarrow t^3=8\)

\(\Leftrightarrow t=2\Leftrightarrow\sqrt{1-x}+\sqrt{1+x}=2\)

\(\Leftrightarrow2+2\sqrt{1-x^2}=4\Leftrightarrow\sqrt{1-x^2}=1\)

\(\Leftrightarrow1-x^2=1\)

\(\Leftrightarrow x=0\)

Khánh Linh
Xem chi tiết
Trên con đường thành côn...
17 tháng 7 2021 lúc 17:09

undefined

Nguyễn Lê Phước Thịnh
17 tháng 7 2021 lúc 22:53

Bài 4: 

c) Ta có: \(\dfrac{x^3}{8}+\dfrac{x^2y}{2}+\dfrac{xy^2}{6}+\dfrac{y^3}{27}\)

\(=\left(\dfrac{x}{2}\right)^3+3\cdot\left(\dfrac{x}{2}\right)^2\cdot\dfrac{y}{3}+3\cdot\dfrac{x}{2}\cdot\left(\dfrac{y}{3}\right)^2+\left(\dfrac{y}{3}\right)^3\)

\(=\left(\dfrac{1}{2}x+\dfrac{1}{3}y\right)^3\)

\(=\left(\dfrac{-1}{2}\cdot8+\dfrac{1}{3}\cdot6\right)^3=\left(-4+2\right)^3=-8\)

Nguyễn Lê Phước Thịnh
17 tháng 7 2021 lúc 22:54

Bài 6:

a) Ta có: \(P=\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right)\)

\(=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-12x\)

=0

b) Ta có: \(Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)

\(=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6x^2-6\)

=-8

Vyhoang
Xem chi tiết
Akai Haruma
31 tháng 12 2023 lúc 12:02

Lời giải:
c.

$4(x+5)^3-7=101$

$4(x+5)^3=101+7=108$

$(x+5)^3=108:4=27=3^3$

$\Rightarrow x+5=3$

$\Rightarrow x=-2$

d.

$2^{x+1}.3+15=39$

$2^{x+1}.3=39-15=24$

$2^{x+1}=24:3=8=2^3$

$\Rightarrow x+1=3$

$\Rightarrow x=2$

aannnn thiênnn
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 10 2021 lúc 21:15

c: Gọi bốn số nguyên liên tiếp là x;x+1;x+2;x+3

Ta có: \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)

\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)

\(=\left(x^2+3x+1\right)^2\)

Nguyễn Hoàng Minh
12 tháng 10 2021 lúc 21:17

\(d,M=\left(x^2-4xy+4y^2\right)-2\left(x-2y\right)+1+9\\ M=\left(x-2y\right)^2-2\left(x-2y\right)+1+9\\ M=\left(x-2y+1\right)^2+9\ge9\\ M_{min}=9\Leftrightarrow x=2y-1\)

Nguyễn Hoàng Minh
12 tháng 10 2021 lúc 21:18

\(a,a^3+b^3+c^3=3abc\\ \Leftrightarrow a^3+b^3+c^3-3abc=0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\left(luôn.đúng.do.a+b+c=0\right)\)

Ánh2103
Xem chi tiết
Lấp La Lấp Lánh
3 tháng 9 2021 lúc 11:47

a) \(A=\sqrt{1-x}+\sqrt{1+x}\)

\(\Rightarrow A^2=1-x+1+x+2\sqrt{\left(1-x\right)\left(1+x\right)}=2+2\sqrt{1-x^2}\)

Do \(-x^2\le0\Rightarrow1-x^2\le1\Rightarrow A^2=2+2\sqrt{1-x^2}\le2+2=4\)

\(\Rightarrow A\le2\)

 

\(maxA=2\Leftrightarrow x=0\)

Áp dụng bất đẳng thức: \(\sqrt{x}+\sqrt{y}\ge\sqrt{x+y}\)(với \(x,y\ge0\))

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2\ge x+y\)

\(\Leftrightarrow x+y+2\sqrt{xy}\ge x+y\Leftrightarrow2\sqrt{xy}\ge0\left(đúng\right)\)

\(A=\sqrt{1-x}+\sqrt{1+x}\ge\sqrt{1-x+1+x}=\sqrt{2}\)

\(maxA=\sqrt{2}\Leftrightarrow\)\(\left[{}\begin{matrix}1-x=0\\1+x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

 

Nguyễn Lê Phước Thịnh
3 tháng 9 2021 lúc 13:26

b: Xét ΔABE vuông tại A có AH là đường cao ứng với cạnh huyền BE

nên \(BH\cdot BE=AB^2\left(1\right)\)

Xét ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC

nên \(AH\cdot AC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BE=AH\cdot AC\)

Bảo Hân Đỗ
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 7 2021 lúc 12:19

Bài 4: 

a) Xét ΔABE và ΔHBE có 

BA=BH(gt)

\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))

BE chung

Do đó: ΔABE=ΔHBE(c-g-c)

b) Ta có: ΔABE=ΔHBE(cmt)

nên EA=EH(hai cạnh tương ứng)

Ta có: BA=BH(gt)

nên B nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: EA=EH(cmt)

nên E nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BE là đường trung trực của AH

c) Ta có: ΔABE=ΔHBE(cmt)

nên \(\widehat{BAE}=\widehat{BHE}\)(hai góc tương ứng)

mà \(\widehat{BAE}=90^0\)(gt)

nên \(\widehat{BHE}=90^0\)

Xét ΔBKC có 

KH là đường cao ứng với cạnh BC

CA là đường cao ứng với cạnh BK

KH cắt CA tại E

Do đó: E là trực tâm của ΔBKC(Tính chất ba đường cao của tam giác)

d) Ta có: EA=EH(cmt)

mà EH<EC(ΔEHC vuông tại H có EC là cạnh huyền)

nên EA<EC

An Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 21:23

Bài 2: 

Ta có: \(3n^3+10n^2-5⋮3n+1\)

\(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow3n\in\left\{0;-3;3\right\}\)

hay \(n\in\left\{0;-1;1\right\}\)

Hồng Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 2 2022 lúc 12:53

Bài 19:

a: \(A=5x+\dfrac{1}{9}y=5\cdot\dfrac{-1}{10}+\dfrac{1}{9}\cdot4.8=\dfrac{-1}{2}+\dfrac{8}{15}=\dfrac{-15+16}{30}=\dfrac{1}{30}\)

b: \(A=x-\dfrac{2}{3}=\dfrac{-1}{3}-\dfrac{2}{3}=-1\)

☆Châuuu~~~(๑╹ω╹๑ )☆
4 tháng 2 2022 lúc 12:54

\(a,7x-2x-\dfrac{2}{3}y+\dfrac{7}{9}y=5x+\dfrac{1}{9}y\\ =5.\left(\dfrac{-1}{10}\right)+\dfrac{1}{9}.4,8\\ =\dfrac{-1}{2}+\dfrac{8}{15}=\dfrac{1}{30}\\ b,x=\dfrac{0,2-0,375+\dfrac{5}{11}}{-0,3+\dfrac{9}{16}-\dfrac{15}{22}}\\ =\dfrac{-1}{3}+\dfrac{\dfrac{-7}{40}+\dfrac{5}{11}}{\dfrac{21}{80}-\dfrac{15}{22}}\\ =\dfrac{-1}{3}+\dfrac{\dfrac{123}{440}}{\dfrac{-369}{880}}=\dfrac{-1}{3}+\dfrac{-2}{3}=\dfrac{-3}{3}=\left(-1\right)\)