6x+6x+1+6x+2=1548
giúp mình với
a) (6x+1)2+(6x-1)2+2(6x+1)(6x-1)
b)(6x-1)2+(6x+1)2-(12x+2)(6x-1)
c)(ac+bd)2+(ad-bc)2
d)(ac-bd)(ac+bd)
giúp mình với ạ :)
Rút gọn biểu thức (6x+1)2+(6x−1)2−2(1+6x)(6x−1)(6x+1)2+(6x−1)2−2(1+6x)(6x−1) =?
Giúp mik với ạ, mik cần gấp.
`(6x+1)^2-2(1+6x)(6x-1)+(6x-1)^2`
`=(6x+1-6x+1)^2`
`=2^2=4`
Giúp mình với mình cần gấp kết quả ạ 1, (x²y + 6x) . (x² - 3xy) a, x⁴y - 3x³y² + 6x³ - 18x²y b, x²y - x³y² + 6x³ - 18x²y C,x⁴y - 3x³y² + 6x³ + 18x²y d, x⁴y + 3x³y² - 6x³ - 18x²y 2, Tìm x biết x . (2x - 4) - 2x² + 9x - 7 = 3 a, x = 1 b, x = 2 C, x = 3 d, x = 4 3, tính giá trị của biểu thức sau tại x = 3 ; y=2 7x . (x² - 2y) + 3xy - 7x³ a, 24 b, -4 c, 6 d, -24 Cảm ơn đã giúp đỡ mình ✨
a)(6x mũ 2+13x-5)
b)(6x+1)mũ 2 + (6x-1)mũ 2-2(1+6x)(6x-1)
c)Chứng minh:x mũ 2-2x +3 ≥ 2 với mọi số thực x
Cho căn x^2-6x+13 - căn x^2-6x+10 = 1
Tính căn x^2-6x+13 + căn x^2-6x+10
Làm ơn giúp mình
Ta có:
\(\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)\)
\(=x^2-6x+13-\left(x^2-6x+10\right)\)
\(=3\)
mà \(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}=1\)
=> \(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}=3\)
Em chưa hiểu ở dòng thứ 3,chị có thể giải thích cho em với được ko ạ
À à em hiểu rồi,nhân 2 cái đó lại,cảm ơn chị rất nhiều ạ
giúp mình với mình dag cần gấp!!! cảm ơn ạ
tìm x: (x+1)*(6x^2+2x)+(x-1)*(6x^2+2x)=0
(x+1)(6x2+2x)+(x-1)(6x2+2x)
<=> (6x2+2x)(x+1+x-1)
<=> 2x(3x+1)2x
<=> 4x2(3x+1)
<=> x2=0
3x+1=0
<=> x=0
x= -1/3 (-1 phần 3)
1, (x-2)(x+2)(x^2+4)-(x^2-3)(x^2+3)
2, (6x+1)^2 +(6x-1)^2 -2(1+6x)(6x-1)
giúp mik với
\(1,\left(x-2\right)\left(x+2\right)\left(x^2+4\right)-\left(x^2-3\right)\left(x^2+3\right)\)
\(=\left(x^2-4\right)\left(x^2+4\right)-\left(x^2-9\right)\)
\(=x^2-16-x^2+9\)
\(=-7\)
\(2,\left(6x+1\right)^2+\left(6x-1\right)^2-2\left(1+6x\right)\left(6x-1\right)\)
\(=\left(6x+1-6x+1\right)^2\)
\(=2^2=4\)
Phân tích \(4x^3-6x^2+6x-2\) thành nhân tử (giải thích các bước cho mình với ạ, mình cảm ơn nhiều♥)
=2(2x^3-3x^2+3x-1)
=2(2x^3-x^2-2x^2+x+2x-1)
=2(2x-1)(x^2-x+1)
Giải phương trình :
sin 8x - cos 6x = \(\sqrt{2}\) ( cos 8x - sin 6x )
giúp mình với ạ !!!!!
\(\Leftrightarrow sin8x-\sqrt{2}cos8x=cos6x-\sqrt{2}sin6x\)
\(\Leftrightarrow\dfrac{1}{\sqrt{3}}sin8x-\dfrac{\sqrt{2}}{\sqrt{3}}cos8x=\dfrac{1}{\sqrt{3}}cos6x-\dfrac{\sqrt{2}}{\sqrt{3}}sin6x\)
Đặt \(\dfrac{1}{\sqrt{3}}=cosa\) với \(a\in\left(0;\dfrac{\pi}{2}\right)\Rightarrow\dfrac{\sqrt{2}}{\sqrt{3}}=sina\)
\(\Rightarrow sin8x.cosa-cos8x.sina=cos6x.cosa-sin6x.sina\)
\(\Leftrightarrow sin\left(8x-a\right)=cos\left(6x+a\right)\)
\(\Leftrightarrow sin\left(8x-a\right)=sin\left(\dfrac{\pi}{2}-6x-a\right)\)
\(\Leftrightarrow...\)
1. 9x^2 + 12x + 5 = 11
2. 6x^2 + 16x + 12 = 2x^2
3. 16x^2 + 22x + 11 = 6x + 5
4. 12x^2 + 20x + 10 = 3x^2 - 4x
giúp mình với ạ
chuyển vế sang r phân tích thành nhân tử, có thể dùng máy tính bỏ túi nhé bạn
câu 1: 9\(x^2\) + 12\(x\) + 5 =11
(3\(x\))2 + 2.3.\(x\) .2 + 22 + 1 = 11
(3\(x\) + 2)2 = 11 - 1
(3\(x\) + 2)2 = 10
\(\left[{}\begin{matrix}3x+2=\sqrt{10}\\3x+2=-\sqrt{10}\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=\sqrt{10}-2\\3x=-\sqrt{10}-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{\sqrt{10}-2}{3}\\x=\dfrac{-\sqrt{10}-2}{3}\end{matrix}\right.\)
Vậy S = {\(\dfrac{-\sqrt{10}-2}{3}\); \(\dfrac{\sqrt{10}-2}{3}\)}
Câu 2: 6\(x^2\) + 16\(x\) + 12 = 2\(x^2\)
6\(x^2\) + 16\(x\) + 12 - 2\(x^2\) = 0
4\(x^2\) + 16\(x\) + 12 = 0
(2\(x\))2 + 2.2.\(x\).4 + 16 - 4 = 0
(2\(x\) + 4)2 = 4
\(\left[{}\begin{matrix}2x+4=2\\2x+4=-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=-2\\2x=-6\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
S = { -3; -1}
3, 16\(x^2\) + 22\(x\) + 11 = 6\(x\) + 5
16\(x^2\) + 22\(x\) - 6\(x\) + 11 - 5 = 0
16\(x^2\) + 16\(x\) + 6 = 0
(4\(x\))2 + 2.4.\(x\) . 2 + 22 + 2 = 0
(4\(x\) + 2)2 + 2 = 0 (1)
Vì (4\(x\)+ 2)2 ≥ 0 ∀ ⇒ (4\(x\) + 2)2 + 2 > 0 ∀ \(x\) vậy (1) Vô nghiệm
S = \(\varnothing\)
Câu 4. 12\(x^2\) + 20\(x\) + 10 = 3\(x^2\) - 4\(x\)
12\(x^2\) + 20\(x\) + 10 - 3\(x^2\) + 4\(x\) = 0
9\(x^2\) + 24\(x\) + 10 = 0
(3\(x\))2 + 2.3.\(x\).4 + 16 - 6 = 0
(3\(x\) + 4)2 = 6
\(\left[{}\begin{matrix}3x+4=\sqrt{6}\\3x+4=-\sqrt{6}\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=-4+\sqrt{6}\\3x=-4-\sqrt{6}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{\sqrt{6}-4}{3}\\x=-\dfrac{\sqrt{6}+4}{3}\end{matrix}\right.\)
S = {\(\dfrac{-\sqrt{6}-4}{3}\); \(\dfrac{\sqrt{6}-4}{3}\)}