rút gọn
(-3)18.(1/9)8
\(\dfrac{1+2+3+...+8+9}{11+12+13+...+18+19}\) rút gọn phân số
M=1+2+3+4+...+911+12+13+...+19=(9+1)9:2(11+19)9:2=45135=13
rút gọn phân số 1+2+3+4+....+8+9 phần 11+12+.....+18+19
\(\frac{1+2+3+4+...+8+9}{11+12+...+18+19}\)
\(\Rightarrow\frac{\left(1+9\right).9:2}{\left(11+9\right).9:2}=\frac{1+9}{11+19}=\frac{10}{30}=\frac{1}{3}\)
Rút gọn: 1 1 - 2 - 1 2 - 3 + 1 3 - 4 - 1 4 - 5 + 1 5 - 6 - 1 6 - 7 + 1 7 - 8 - 1 8 - 9
Rút gọn:
a)18^3:9^3
b)27^4.81^10
c)27^8:9^4
d)9^25.27^4.81^3
a, 8
b, 43046721( hình như đề sai phải bạn )
c, 43046721
d, ......
Bài 3: Rút gọn các phân số sau đây: a) 246246246 / 357357357
b) 555555 – 10101 /1212120 + 40404
d) 3.4.7 + 7.8.35 + 10.11.49 + 13.15.56 / 3.4.5 + 7.8.25 + 10.11.35+ 13.15.40
e) 1 +2 + 3 +...+ 8 + 9/ 11 + 12 + 13 + ...+ 18 + 19
c) 2 trên 40. 3 trên 18. 13 trên 2 / 2 trên 39. 3 trên 17. 39
Rút gọn : 9 mũ 14 nhân 25 mũ 5 nhân 8 mũ 7 (phần) 18 mũ 2 nhân 625 mũ 3 nhân 24 mũ 3
\(\dfrac{9^{14}\cdot25^5\cdot8^7}{18^2\cdot625^3\cdot24^3}\)
\(=\dfrac{3^{42}\cdot5^{10}\cdot2^{21}}{2^2\cdot3^4\cdot5^{12}\cdot2^9\cdot3^3}=\dfrac{3^{42}\cdot5^{10}\cdot2^{21}}{2^{11}\cdot3^7\cdot5^{12}}\)
\(=\dfrac{3^{35}}{5^2}\cdot2^{10}\)
Rút gọn
a,(x+y)2-(x-y)2
b, (a+b)3+ (a-b)3-2a3
c, 98.28- (184-1)(184+1)
a) \(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y\cdot2x=4xy\)
b) \(\left(a+b\right)^3+\left(a-b\right)^3-2a^3\)
\(=a^3+3a^2b+3ab^2+b^3+a^2-3a^2b+3ab^2-b^3-2a^3\)
\(=6ab^2\)
c) \(9^8\cdot2^8-\left(18^4-1\right)\left(18^4+1\right)\)
\(=18^8-\left(18^8-1\right)=1\)
a) \(\left(x+y\right)^2-\left(x-y\right)^2=x^2+2xy+y^2-\left(x^2-2xy+y^2\right)\)
\(=x^2+2xy+y^2-x^2+2xy-y^2\)
\(=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(2xy+2xy\right)\)
\(=4xy\)
a) (x+y)2-(x-y)2
=(x+y+x-y)(x+y-x+y)
=2x.2y=4xy
b) (a+b)3+(a-b)3-2a3
=(a+b+a-b)(a2+2ab+b2-a2+b2+a2-2ab+b2)-2a3
=2a.(a2+3b2)-2a3
=2a3+6ab2-2a3
=6ab2
Bài 3: Rút gọn biểu thức (Dùng hằng đẳng thức)
1, (x+y)\(^2\)-(x-y)\(^2\)
2, (x+y)\(^3\)-(x-y)\(^3\)-2y\(^3\)
3,(x+y)\(^2\)-2(x+y)(x-y)+(x-y)\(^2\)
4,(2x+3)\(^2\)-2(2x+3)(2x+5)+(2x+5)\(^2\)
5, 9\(^8\). 2\(^8\)-(18\(^4\)+1)(18\(^4\)-1)
\(1,\left(x+y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)
\(2,\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)
\(=6x^2y\)
\(3,\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =4y^2\)
\(4,\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\\ =\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\\ =\left(2x+3-2x-5\right)^2\\ =\left(-2\right)^2\\ =4\)
\(5,9^8.2^8-\left(18^4+1\right)\left(18^4-1\right)\\ =18^8-\left[\left(18^4\right)^2-1\right]\\ =18^8-18^8+1\\ =1\)
1: =x^2+2xy+y^2-x^2+2xy-y^2=4xy
2: =x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3
=6x^2y
3: =(x+y-x+y)^2=(2y)^2=4y^2
4: =(2x+3-2x-5)^2=(-2)^2=4
5: =18^8-18^8+1=1
Cho \(P=\left(\dfrac{x+3}{x-9}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}\)
a, Rút gọn P
b, Tính P khi \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
a) Ta có: \(P=\left(\dfrac{x+3}{x-9}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}\)
\(=\dfrac{x+3+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
b) Ta có: \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
\(=5+\sqrt{2}-4-\sqrt{2}\)
=1
Thay x=1 vào P, ta được:
\(P=\dfrac{1+1}{1+3}=\dfrac{2}{4}=\dfrac{1}{2}\)
rút gọn các biểu thức sau
(a+b)2 +( a-b)3-2a3
98*28-(184-1)(184+1)