Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Duong Thi Nhuong
Xem chi tiết
Hung nguyen
29 tháng 3 2017 lúc 8:38

Ta có:

\(\left(\sqrt{25-x^2}-\sqrt{15-x^2}\right)\left(\sqrt{25-x^2}+\sqrt{15-x^2}\right)=25-x^2-\left(15-x^2\right)=10\)

\(\Rightarrow y=\sqrt{25-x^2}+\sqrt{15-x^2}=\dfrac{10}{2}=5\)

Nguyễn Thị Kiểm
Xem chi tiết
Quang
13 tháng 11 2016 lúc 0:18

Ta có: \(A\cdot\left(\sqrt{25-x^2}-\sqrt{15-x^2}\right)=\left(25-x^2-15+x^2\right)=10\)

Do đó A = 10/2 = 5

Lê Thị Diệu Hiền
Xem chi tiết
Hoang Tan Dung
Xem chi tiết
alibaba nguyễn
7 tháng 11 2016 lúc 22:37

Ta có

\(\left(\sqrt{25-x^2}+\sqrt{15-x^2}\right)\left(\sqrt{25-x^2}-\sqrt{15-x^2}\right)=25-x^2-15+x^2=10\)

=> Số cần tìm bằng 5

Nguyễn Thị Vân Anh
Xem chi tiết
Trần Đức Thắng
11 tháng 10 2015 lúc 22:35

\(\left(\sqrt{x+5}-\sqrt{x}\right)\left(\sqrt{x+5}+\sqrt{x}\right)=\sqrt{x+5}+\sqrt{x}\)

=> \(x+5-x=M\Rightarrow M=5\)

b ) tương tự 

Trần Thị Loan
11 tháng 10 2015 lúc 22:39

b) N.N' = \(\left(\sqrt{25-x^2}-\sqrt{15-x^2}\right).\left(\sqrt{25-x^2}+\sqrt{15-x^2}\right)=\left(25-x^2\right)-\left(15-x^2\right)=10\)

=> 2.N = 10 => N = 10:2 =5

Simple
Xem chi tiết
Simple
24 tháng 8 2021 lúc 17:59

Chỗ căn bị thiếu là √x nha.

Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 23:55

Ta có: \(\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}+\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)

\(=\dfrac{x-5\sqrt{x}-x+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}:\dfrac{25-x-x+9+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{5}{\sqrt{x}+3}\)

Mai Hồng Ngọc
Xem chi tiết
Lê Thị Thục Hiền
7 tháng 7 2021 lúc 15:15

đK: \(x\ge0;x\ne25;x\ne9\)

\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-1\right]:\left[\dfrac{25-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right]\)

\(=\left[\dfrac{\sqrt{x}}{\sqrt{x}+5}-1\right]:\dfrac{25-x-\left(x-9\right)+\left(x-25\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-5}{\sqrt{x}+5}:\dfrac{9-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-5}{\sqrt{x}+5}:\dfrac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)\(=\dfrac{-5}{\sqrt{x}+5}:\dfrac{-\sqrt{x}-3}{\sqrt{x}+5}\)

\(=\dfrac{-5}{\sqrt{x}+5}:\dfrac{\sqrt{x}+5}{-\left(\sqrt{x}+3\right)}=\dfrac{5}{\sqrt{x}+3}\)

Hello mọi người
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2021 lúc 23:14

\(\sqrt{36x-72}-15\sqrt{\dfrac{x-2}{25}}=20+4\sqrt{x-2}\)

\(\Leftrightarrow6\sqrt{x-2}-3\sqrt{x-2}-4\sqrt{x-2}=20\)

\(\Leftrightarrow-\sqrt{x-2}=20\)(vô lý)

Nguyễn Thị Thu Phương
Xem chi tiết
Nguyễn Thị Thu Phương
15 tháng 8 2021 lúc 15:55

ai giúp với ạ :<

Nguyễn Lê Phước Thịnh
15 tháng 8 2021 lúc 20:30

2: Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

Nguyễn Lê Phước Thịnh
15 tháng 8 2021 lúc 23:20

1: Ta có: \(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}-\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)

\(=\left(\dfrac{x-5\sqrt{x}-x+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right):\dfrac{25-x-x+9-x+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-5}{\sqrt{x}+5}\cdot\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{-3x+59}\)

\(=\dfrac{-5\left(\sqrt{x}-3\right)}{-3x+59}\)

\(=\dfrac{5\sqrt{x}-15}{3x-59}\)