Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phan hi
Xem chi tiết
Lãnh Hạ Thiên Băng
18 tháng 11 2016 lúc 20:26

 kẻ đường cao AH ( H thuộc BC) 
xét tam giác ABH có AH= BH .tanB 
xét tam giác ACH có AH= CH.tanC 
~> BH = CH.tanC/tanB 
có BC = BH + CH = CH ( tanB + tanC)/tanB = 9 
CH=9tanB/(tanB+tanC) 
xét tam giác ACH có AC=CH/cosC 
~> AC =7,91 

phan hi
18 tháng 11 2016 lúc 20:31

tính AH bạn

phan hi
Xem chi tiết
xube hoc ngu :33
Xem chi tiết

a, xét tam giác HAB và tam giác HAC ta có

  AB=AC(gt)

 góc BAH= góc AHC ( 2 góc tương ứng )

AH ( chung)

=>tam giác AHD = Tam giác AHC ( c. g.c)

=> HB=HC ( hai cạnh tương ứng )

=>góc AHC=góc AHD ( hai góc tương ứng)

b,xét tam giác ADH và tam giác AEH ta có 

 AH ( chung )

góc ADH = góc AEH ( ..)

c. Tam giac ABC vuông tại C

           2       2       2

=> BC   =AB  +AC

       2       2        2

=>10 =  9    + AC

        2

=>AC = 100-81 =19

=>AC = 4.35

Thoa Đặng
Xem chi tiết
tuananh vu
Xem chi tiết
Phong Thiên
7 tháng 9 2017 lúc 20:08

a) Áp dụng ĐL Pytago vào tam giác ABC: BC^2= AB^2+AC^2= 3^2+4^2=25 =>> BC=5
Áp dụng hệ thức lượng: AH.BC=AB.AC => AH.5=3.4 => AH= 2,4
b) Áp dụng tỉ số lượng giác: sinB= AC/BC= 4/5= 0,8 => góc B= 59 độ
Góc C= 180-90-59= 31 độ
c) Áp dụng Pytago vào tam giác BHA: BH=1,8 (tự tính)
Góc BAH= 180-90-59= 31 độ
Góc BAE= 90/2= 45 độ (phân giác)
Góc HAE= 45 - 31= 14 độ
HE= tanHAE. AH= tan14. 2,4= 0,53
BE= HE+ BH= 0,53 + 1,8 = 2,33
CE= BC - BE= 5-2,33= 2,67

MẤY BÀI NÀY CHỈ CẦN THUỘC CÔNG THỨC LÀ LÀM ĐƯỢC HẾT .-. CHỊU KHÓ HỌC THUỘC ĐI RỒI MẤY BÀI NÀY SẼ TRỞ NÊN ĐƠN GIẢN ĐẾN BẤT NGỜ :))) ĐÂY LÀ KIẾN THỨC CŨ KO BIẾT LÀM ĐÚNG KO NỮA :33 HÊN XUI NHÁ!!
CỐ LÊN BABEEE <3

 

Anh Thu
Xem chi tiết
Akai Haruma
13 tháng 1 lúc 13:56

Lời giải:
a. Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20$ (cm) 

Áp dụng tính chất đường phân giác:

$\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}$

Mà: $BD+DC=BC=20$ nên:

$BD=20:(3+4).3=\frac{60}{7}$ (cm) 

$CD= 20:(3+4).4=\frac{80}{7}$ (cm) 

b.

$AH=2S_{ABC}:BC=\frac{AB.AC}{BC}=\frac{12.16}{20}=9,6$ (cm) 

$BH=\sqrt{AB^2-AH^2}=\sqrt{12^2-9,6^2}=7,2$ (cm) 
$HD = BD-BH = \frac{60}{7}-7,2=\frac{48}{35}$ (cm) 

$AD = \sqrt{AH^2+HD^2}=\sqrt{9,6^2+(\frac{48}{35})^2}=\frac{48\sqrt{2}}{7}$ (cm)

Akai Haruma
13 tháng 1 lúc 13:58

Hình vẽ:

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=12^2+16^2=20^2\)

=>\(BC=20\left(cm\right)\)

Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

=>\(\dfrac{BD}{12}=\dfrac{CD}{16}\)

=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)

mà BD+CD=BC=20

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)

=>\(BD=\dfrac{20}{7}\cdot3=\dfrac{60}{7}\left(cm\right);CD=\dfrac{20}{7}\cdot4=\dfrac{80}{7}\left(cm\right)\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot20=12\cdot16=192\)

=>\(AH=\dfrac{192}{20}=9,6\left(cm\right)\)

Ta có: ΔAHB vuông tại H

=>\(HB^2+AH^2=AB^2\)

=>\(HB^2=12^2-9,6^2=51,84\)

=>\(HB=\sqrt{51,84}=7,2\left(cm\right)\)

=>HC=BC-HB=12,8(cm)

Vì CD<CH

nên D nằm giữa C và H

=>CD+DH=CH

=>\(DH=12.8-\dfrac{80}{7}=\dfrac{48}{35}\left(cm\right)\)

ΔAHD vuông tại H

=>\(AH^2+HD^2=AD^2\)

=>\(AD^2=\left(\dfrac{48}{35}\right)^2+9,6^2=\dfrac{4608}{49}\)

=>\(AD=\sqrt{\dfrac{4608}{49}}=\dfrac{48\sqrt{2}}{7}\left(cm\right)\)

tran pham yen nhi
Xem chi tiết
llê anh thư
Xem chi tiết
Huỳnh Thị Kim Tài
28 tháng 4 2018 lúc 19:34
a) xét tam giác ABC và tam giác HBA có: BAC=BHA (90°) B chung => tam giác ABC~ tam giác HBA (g.g) b) Áp dụng định lý py ta go trong tam giác ABC vuông tại A BC 2 = AC 2 + AB 2 BC 2 = (4,5)2 + (6)2 BC 2 = 20.25 + 36 BC 2 = 56.25 BC = căn 56.25 = 7.5 (cm) c) Áp dụng định lý đảo ta lét ta có AE/ AB = AF / AC (E € AB, F € AC) => EF// BC
Khiết Băng
Xem chi tiết