Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Thiên Tuệ
Xem chi tiết
shitbo
7 tháng 5 2020 lúc 22:35

\(P=\frac{y^2z^2}{x\left(y^2+z^2\right)}+\frac{z^2x^2}{y\left(x^2+z^2\right)}+\frac{x^2y^2}{z\left(x^2+y^2\right)}\)

\(=\frac{1}{x\left(\frac{1}{y^2}+\frac{1}{z^2}\right)}+\frac{1}{y\left(\frac{1}{z^2}+\frac{1}{x^2}\right)}+\frac{1}{z\left(\frac{1}{x^2}+\frac{1}{y^2}\right)}\)

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a;b;c\right)\) thì \(a^2+b^2+c^2=1\) Ta cần chứng minh:

\(P=\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\)

\(=\frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2}\)

\(=\frac{a^2}{a\left(1-a^2\right)}+\frac{b^2}{b\left(1-b^2\right)}+\frac{c^2}{c\left(1-c^2\right)}\)

Theo đánh giá bởi AM - GM ta có:

\(a^2\left(1-a^2\right)^2=\frac{1}{2}\cdot2a^2\cdot\left(1-a^2\right)\left(1-a^2\right)\)

\(\le\frac{1}{2}\left(\frac{2a^2+1-a^2+1-a^2}{3}\right)^3=\frac{4}{27}\)

\(\Rightarrow a\left(1-a^2\right)^2\le\frac{2}{3\sqrt{3}}\Leftrightarrow\frac{a^2}{a\left(1-a\right)^2}\ge\frac{3\sqrt{3}}{2}a^2\)

Tương tự rồi cộng lại ta có ngay điều phải chứng minh

Khách vãng lai đã xóa
Minh Phương Đặng
Xem chi tiết
๖ۣۜLuyri Vũ๖ۣۜ
Xem chi tiết
Đặng Ngọc Quỳnh
18 tháng 10 2020 lúc 12:40

Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)

Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)

\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)

\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)

\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)

\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)

Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1

Khách vãng lai đã xóa
Nguyễn Thị Ngọc Mai
Xem chi tiết
HD Film
13 tháng 10 2019 lúc 22:29

Câu 1:

\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=x^2y^2+\frac{1}{256x^2y^2}+\frac{255}{256x^2y^2}+2\)

\(\ge\frac{1}{8}+2+\frac{255}{256x^2y^2}\)

Ta lại có: \(1=x+y\ge2\sqrt{xy}\Leftrightarrow1\ge16x^2y^2\)

\(\Rightarrow M\ge\frac{17}{8}+\frac{255}{16}=\frac{289}{16}\)

Dấu = xảy ra khi x=y=1/2

HD Film
13 tháng 10 2019 lúc 22:41

Áp dụng BDT Cauchy-Schwarz: \(\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\right)\ge\frac{1}{3x+3y+2z}\)

CMTT rồi cộng vế với vế ta có.\(VT\le\frac{1}{16}\cdot4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{3}{2}\)

Dấu = xảy ra khi x=y=z=1

kim chi nguyen
Xem chi tiết
tiểu an Phạm
Xem chi tiết
chikaino channel
9 tháng 5 2018 lúc 15:54

Đặt  \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

Ta có \(a,b,c>0;a^2+b^2+c^2=1\)

và \(P=\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\)

\(=\frac{a^2}{a\left(1-a^2\right)}+\frac{b^2}{b\left(1-b^2\right)}+\frac{c^2}{c\left(1-c^2\right)}\)

Áp dụng bất đẳng thức Cô-si cho 3 số dương ta có

\(a^2\left(1-a^2\right)^2=\frac{1}{2}.2a^2.\left(1-a^2\right)\left(1-a^2\right)\)

\(\le\frac{1}{2}\left(\frac{2a^2+1-a^2+1-a^2}{3}\right)^3=\frac{4}{27}\)

\(\Rightarrow a\left(1-a^2\right)\le\frac{2}{3\sqrt{3}}\Rightarrow\frac{a^2}{a\left(1-a^2\right)}\ge\frac{3\sqrt{3}}{2}a^2\)(1)

Tương tự \(\frac{b^2}{b\left(1-b^2\right)}\ge\frac{3\sqrt{3}}{2}b^2\)(2)

\(\frac{c^2}{c\left(1-c^2\right)}\ge\frac{3\sqrt{3}}{2}c^2\)(3)

từ (1),(2) và (3) ta có \(P\ge\frac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\frac{3\sqrt{3}}{2}\)

Vậy Min của \(P=\frac{3\sqrt{3}}{2}\)Khi x=y=z\(=\sqrt{3}\)

Ngoc An Pham
Xem chi tiết
Akai Haruma
9 tháng 3 2019 lúc 0:12

Lời giải:

\(\frac{1}{x^2}=1-\frac{1}{y^2}-\frac{1}{z^2}<1\Rightarrow x^2-1>0\)

\(P=\frac{y^2z^2}{x(y^2+z^2)}+\frac{x^2z^2}{y(x^2+z^2)}+\frac{x^2y^2}{z(x^2+y^2)}\)

\(=\frac{1}{x(\frac{1}{y^2}+\frac{1}{z^2})}+\frac{1}{y(\frac{1}{x^2}+\frac{1}{z^2})}+\frac{1}{z(\frac{1}{x^2}+\frac{1}{y^2})}\)

\(=\frac{1}{x(1-\frac{1}{x^2})}+\frac{1}{y(1-\frac{1}{y^2})}+\frac{1}{z(1-\frac{1}{z^2})}\)

\(=\frac{x}{x^2-1}+\frac{y}{y^2-1}+\frac{z}{z^2-1}\)

Xét đánh giá sau:

\(\frac{x}{x^2-1}-\frac{3\sqrt{3}}{2x^2}=\frac{(x-\sqrt{3})^2(2x+\sqrt{3})}{2x^2(x^2-1)}\geq 0, \forall x^2>1\)

\(\Rightarrow \frac{x}{x^2-1}\geq \frac{3\sqrt{3}}{2x^2}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:

\(\Rightarrow P=\frac{x}{x^2-1}+\frac{y}{y^2-1}+\frac{z}{z^2-1}\geq \frac{3\sqrt{3}}{2}(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2})=\frac{3\sqrt{3}}{2}\)

Vậy \(P_{\min}=\frac{3\sqrt{3}}{2}\Leftrightarrow x=y=z=\sqrt{3}\)

$\text{thangdeptrai}$
9 tháng 3 2019 lúc 11:16

SOS get it <(")

\(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)->\left(a;;bc\right)\text{for}\left(a;b;c>0\text{and}a^2+b^2+c^2=1\right)\)

\(\text{Khido}P=\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\)

\(\text{Ta se cm}\sum_{cyc}\frac{a}{b^2+c^2}\ge\frac{3\sqrt{3}}{2}\)\(\text{Viet lai BDT can chung minh}\)

\(\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\ge\frac{3\sqrt{3}}{2\sqrt{x^2+y^2+z^2}}\)

\(\text{Chuan hoa}a^2+b^2+c^2=3\text{ta can cm:}\)

\(\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{a}{3-a^2}+\frac{b}{3-b^2}+\frac{c}{3-c^2}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{a}{3-a^2}-\frac{1}{2}+\frac{b}{3-b^2}-\frac{1}{2}+\frac{c}{3-c^2}-\frac{1}{2}\ge0\)

\(\Leftrightarrow\sum_{cyc}\left(\frac{a}{3-a^2}-\frac{1}{2}-\frac{1}{2}\left(x^2-1\right)\right)\ge0\)

\(\Leftrightarrow\frac{a\left(a+2\right)\left(a-1\right)^2}{3-a^2}+\frac{b\left(b+2\right)\left(b-1\right)^2}{3-b^2}+\frac{c\left(c+2\right)\left(c-1\right)^2}{3-c^2}\ge0\)

khôi lê nguyễn kim
Xem chi tiết
Thanh Tùng DZ
4 tháng 11 2019 lúc 17:06

\(\frac{x+1}{1+y^2}=\frac{\left(x+1\right)\left(1+y^2\right)-y^2\left(x+1\right)}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{1+y^2}\)

TT...

\(\Rightarrow Q=x+y+z+3-\frac{y^2\left(x+1\right)}{1+y^2}-\frac{z^2\left(y+1\right)}{1+z^2}-\frac{x^2\left(1+z\right)}{1+x^2}\)

\(\ge6-\frac{y^2\left(x+1\right)}{2y}-\frac{z^2\left(y+1\right)}{2z}-\frac{x^2\left(z+1\right)}{2x}=6-\frac{xy+yz+xz+x+y+z}{2}\)

\(=6-\frac{3+xy+yz+xz}{2}\ge6-\frac{3+\frac{\left(x+y+z\right)^2}{3}}{2}=6-\frac{3+\frac{3^2}{3}}{2}=3\)

Vậy GTNN của Q là 3 khi x = y = z = 1

Khách vãng lai đã xóa
Ayakashi
Xem chi tiết
Kiệt Nguyễn
30 tháng 7 2020 lúc 19:55

Xét: \(\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}-\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}=\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}\)\(=\frac{\left(x^2+y^2\right)\left(x^2-y^2\right)}{\left(x^2+y^2\right)\left(x+y\right)}=\frac{\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)}{\left(x^2+y^2\right)\left(x+y\right)}=x-y\)(1)

Tương tự, ta có: \(\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}-\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}=y-z\)(2); \(\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}-\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}=z-x\)(3)

Cộng theo vế của 3 đẳng thức (1), (2), (3), ta được:

\(\left[\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\right]\)\(-\left[\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\right]=0\)

\(\Rightarrow\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)\(=\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

Mà \(A=\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)nên \(2A=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)\(\ge\frac{\frac{\left(y^2+z^2\right)^2}{2}}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{\frac{\left(y^2+z^2\right)^2}{2}}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{\frac{\left(z^2+x^2\right)^2}{2}}{\left(z^2+x^2\right)\left(z+x\right)}\)

\(=\frac{1}{2}\left(\frac{x^2+y^2}{x+y}+\frac{y^2+z^2}{y+z}+\frac{z^2+x^2}{z+x}\right)\)\(\ge\frac{1}{2}\left(\frac{\frac{\left(x+y\right)^2}{2}}{x+y}+\frac{\frac{\left(y+z\right)^2}{2}}{y+z}+\frac{\frac{\left(z+x\right)^2}{2}}{z+x}\right)\)\(=\frac{1}{4}\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]=\frac{1}{2}\left(x+y+z\right)=\frac{1}{2}\)(Do theo giả thiết thì x + y + z = 1)

\(\Rightarrow A\ge\frac{1}{4}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

Khách vãng lai đã xóa
Thắng Nguyễn
12 tháng 8 2017 lúc 19:15

Bài này t làm rồi, "nhẹ" không ấy mà :|

Dự đoán khi \(x=y=z=\frac{1}{3}\Rightarrow A=\frac{1}{4}\). Ta c/m nó là GTNN của A

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(A=Σ\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{Σ\left(x^2+y^2\right)\left(x+y\right)}\)

Cần chứng minh BĐT \(\frac{\left(x^2+y^2+z^2\right)^2}{Σ\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{x+y+z}{4}\)

\(\Leftrightarrow4\left(x^2+y^2+z^2\right)^2\ge\left(x+y+z\right)Σ\left(2x^3+x^2y+x^2z\right)\)

\(\LeftrightarrowΣ\left(2x^4-3x^3y-3x^3z+6x^2y^2-2x^2yz\right)\ge0\)

\(\LeftrightarrowΣ\left(2x^4-3x^3y-3x^3z+4x^2y^2\right)+Σ\left(2x^2y^2-2x^2yz\right)\ge0\)

\(\LeftrightarrowΣ\left(x^4-3x^3y+4x^2y^2-3xy^3+y^4\right)+Σ\left(x^2z^2-2z^2xy+y^2z^2\right)\ge0\)

\(\LeftrightarrowΣ\left(x-y\right)^2\left(x^2-xy+y^2\right)+Σz^2\left(x-y\right)^2\ge0\)

BĐT cuối đúng tức ta có \(A_{Min}=\frac{1}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)

P/s: Nguồn lời giải Câu hỏi của Vo Trong Duy - Toán lớp 9 - Học toán với OnlineMath, rảnh quá ngồi gõ lại :V

Trương Thanh Nhân
30 tháng 7 2020 lúc 20:26

Cho tam giác ABC nhọn. Các đường cao AD, BE, CF cắt tại H. Qua A vẽ đường thẳng song song với BE,CF lần lượt cắt CF,BE tại P và Q. Chứng minh: PQ vuông góc với trung tuyến AM của tam giác ABC

Khách vãng lai đã xóa