x \(\times\) 4 + 1/2 \(\times \) x=55,35
Tim x
X\(\times\)4+0,5\(\times\)X=55,35
\(X\cdot4+0,5\cdot X=55,35\)
\(X\cdot\left(4+0,5\right)=55,35\)
\(X\cdot4,5=55,35\)
\(X=55,35:4,5\)
\(X=12,3\)
Tìm x
A, ( x - 1 )^x+2 = ( x - 1 )^x+4
B, 1/4 × 2/6 × 3/8 × 4/10 × 5/12 ×....× 30/62 × 31/64 = 2^x
\(A\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\\\Leftrightarrow \left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\\ \Leftrightarrow\left(x-1\right)^{x+2}\left(\left(x-1\right)^{x+2}+1\right)=0\\ \Leftrightarrow\left(x-1\right)^{x+2}=0hoac\left(x-1\right)^{x+2}+1=0\)
Giả tiếp đc x=1
Rút gọn biểu thức:
a)3x×(4x-3)-(2x-1)×(6x+5)
b)3x×(x-1)^2-2x×(x+3)×(x-3)+4x×(x-4)
c)(x-1)^3×(x+2)×(x^2x+4)+3×(x+4)×(x-4)
d)(x+1)×(x^2+x+1)×(x-1)×(x^2-x+1)
Giúp mk vs nha. Cảm ơn các bạn nhiều♡♡♡¤¤¤☆☆☆
Việt Nam vô địch..♡♡♡☆☆☆☆☆☆
a: \(=12x^2-9x-12x^2-10x+6x+5=-13x+5\)
b: \(=3x\left(x^2-2x+1\right)-2x\left(x^2-9\right)+4x^2-16x\)
\(=3x^3-6x^2+3x-2x^3+18x+4x^2-16x\)
\(=x^3-2x^2+3x\)
c: \(=x^3-3x^2+3x-1+x^3+8+3\left(x^2-16\right)\)
\(=2x^3-3x^2+3x+7+3x^2-48=2x^3+3x-41\)
d: \(=\left(x^3+1\right)\left(x^3-1\right)=x^6-1\)
Bài 1 :Rút gọn rồi tính giá trị của biểu thức :
a) A=(x+3)^2 + (x-3)×(x+3) - 2×(x+2)×(x-4); với x = 1/2
b) B=(3x+4)^2 - (x+4)×(x+4)-10x; với x = 1/10
c) C=(x+1)^2 - (2x-1)^2 + 3×(x-2)×(x+2); với x=1
d) D=(x-3)×(x+3) + (x-2)^2 - 2x×(x-4); với x = -1
Mọi người giúp mình với ạ ;-;
Bài 1:
a) Ta có: \(A=\left(x+3\right)^2+\left(x-3\right)\left(x+3\right)-2\left(x+2\right)\left(x-4\right)\)
\(=x^2+6x+9+x^2-9-2\left(x^2-4x+2x-8\right)\)
\(=2x^2+6x-2\left(x^2-2x-8\right)\)
\(=2x^2+6x-2x^2+4x+16\)
\(=10x+16\)
Thay \(x=\frac{1}{2}\) vào biểu thức \(A=10x+16\), ta được:
\(A=10\cdot\frac{1}{2}+16=5+16=21\)
Vậy: 21 là giá trị của biểu thức \(A=\left(x+3\right)^2+\left(x-3\right)\left(x+3\right)-2\left(x+2\right)\left(x-4\right)\) tại \(x=\frac{1}{2}\)
b) Ta có: \(B=\left(3x+4\right)^2-\left(x+4\right)\left(x+4\right)-10x\)
\(=9x^2+24x+16-\left(x^2+8x+16\right)-10x\)
\(=9x^2+24x+16-x^2-8x-16-10x\)
\(=8x^2+6x\)
Thay \(x=\frac{1}{10}\) vào biểu thức \(B=8x^2+6x\), ta được:
\(B=8\cdot\left(\frac{1}{10}\right)^2+6\cdot\frac{1}{10}=8\cdot\frac{1}{100}+\frac{6}{10}\)
\(=\frac{8}{100}+\frac{6}{10}\)
\(=\frac{8}{100}+\frac{60}{100}=\frac{17}{25}\)
Vậy: \(\frac{17}{25}\) là giá trị của biểu thức \(B=\left(3x+4\right)^2-\left(x+4\right)\left(x+4\right)-10x\) tại \(x=\frac{1}{10}\)
c) Ta có: \(C=\left(x+1\right)^2-\left(2x-1\right)^2+3\left(x-2\right)\left(x+2\right)\)
\(=x^2+2x+1-\left(4x^2-4x+1\right)+3\left(x^2-4\right)\)
\(=x^2+2x+1-4x^2+4x-1+3x^2-12\)
\(=6x-12\)
Thay x=1 vào biểu thức C=6x-12, ta được:
\(C=6\cdot1-12=6-12=-6\)
Vậy: -6 là giá trị của biểu thức \(C=\left(x+1\right)^2-\left(2x-1\right)^2+3\left(x-2\right)\left(x+2\right)\) tại x=1
d) Ta có: \(D=\left(x-3\right)\left(x+3\right)+\left(x-2\right)^2-2x\left(x-4\right)\)
\(=x^2-9+x^2-4x+4-2x^2+8x\)
\(=4x-5\)
Thay x=-1 vào biểu thức D=4x-5,ta được:
\(D=4\cdot\left(-1\right)-5=-4-5=-9\)
Vậy: -9 là giá trị của biểu thức \(D=\left(x-3\right)\left(x+3\right)+\left(x-2\right)^2-2x\left(x-4\right)\) tại x=-1
Tìm x, biết;
a) 2×(x-1/3)-3×(x-1/2)=1/2×x
b) -3×(x-1/4)-1/3×(x+1/2)=x
a: =>2x-2/3-3x+3/2=1/2x
=>-3/2x=-5/6
=>x=5/6:3/2=5/6x2/3=10/18=5/9
b: =>-3x+3/4-1/3x-1/6=x
=>-13/3x=-7/12
=>x=7/12:13/3=7/12x3/13=21/156=7/52
A. 5x=6×(x-1)
B.1×(3x)=(x+1)×2
C.3×(2x+1)=5×(x+2)
D.5×(7-x)=-4×(8x-2)
1/4×2/6×3/8×4/10×5/12×.....×30/62×1/64=2^x
Tìm x
4. Tìm x,y bt
a, (x^2-1)×(x^2-4)×(x^2-7)×(x^2-10)<0
b, (x^3 +5 )×(x^3+10)×(x^3+15)×(x^3+20)<0
Bài 3 : Tìm x, biết :
a) 16x^2 - (4x - 5)^2 = 15
b) (2x + 3)^2 - 4×(x - 1)×(x+ 1)=49
c) (2x + 1)×(1 - 2x)+(1 - 2x)^2=18
d) 2×(x + 1)^2 - (x - 3)×(x + 3) - (x - 4)^2=0
e) (x -5)^2 - x×(x - 4)=9
f) (x - 5)^2 + (x - 4)×(1 - x)=0
Giúp mình với, mình bó tay bài này rồi ;-;
Bài 3: Tìm x, biết:
a) \(16x^2-\left(4x-5\right)^2=15\)
\(\Leftrightarrow16x^2-16x^2+40x-25-15=0\)
\(\Leftrightarrow40x-40=0\)
\(\Leftrightarrow4x=40\)
\(\Leftrightarrow x=10\)
Vậy x = 10
b) \(\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)
\(\Leftrightarrow\left(2x+3\right)^2-4\left(x^2-1\right)=49\)
\(\Leftrightarrow4x^2+12x+9-4x^2+4-49=0\)
\(\Leftrightarrow12x-36=0\)
\(\Leftrightarrow12x=36\)
\(\Leftrightarrow x=3\)
Vậy x = 3
c) \(\left(2x+1\right)\left(1-2x\right)+\left(1-2x\right)^2=18\)
\(\Leftrightarrow\left(1-2x\right)\left(2x+1+1-2x\right)=18\)
\(\Leftrightarrow2\left(1-2x\right)=18\)
\(\Leftrightarrow2-4x=18\)
\(\Leftrightarrow4x=-16\)
\(\Leftrightarrow x=-4\)
Vậy x =-4
d) \(2\left(x+1\right)^2-\left(x-3\right)\left(x+3\right)-\left(x-4\right)^2=0\)
\(\Leftrightarrow2x^2+4x+2-x^2+9-x^2+8x-16=0\)
\(\Leftrightarrow12x-5=0\)
\(\Leftrightarrow12x=5\)
\(\Leftrightarrow x=\frac{5}{12}\)
Vậy \(x=\frac{5}{12}\)
e) \(\left(x-5\right)^2-x\left(x-4\right)=9\)
\(\Leftrightarrow x^2-10x+25-x^2+4x=9\)
\(\Leftrightarrow25-6x=9\)
\(\Leftrightarrow6x=16\)
\(\Leftrightarrow x=\frac{8}{3}\)
Vậy \(x=\frac{8}{3}\)
f) \(\left(x-5\right)^2+\left(x-4\right)\left(1-x\right)=0\)
\(\Leftrightarrow x^2-10x+25+x-x^2-4+4x=0\)
\(\Leftrightarrow21-5x=0\)
\(\Leftrightarrow5x=21\)
\(\Leftrightarrow x=\frac{21}{5}\)
Vậy \(x=\frac{21}{5}\)
Tìm x biết
a, | 1/2 × x - 3 | = 1/2
b, | 3× x + 1/5 | - 1/3 = 2/3
c, |3× x - 1/5 | + | 15× x - 1 |= 6/2
d, | 1/2 × x - 3 | < 1/2
e, | 3× x - 4/5 | > 1/3
a: \(\left|\dfrac{1}{2}x-3\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-3=\dfrac{1}{2}\\\dfrac{1}{2}x-3=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=\dfrac{7}{2}\\\dfrac{1}{2}x=\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=5\end{matrix}\right.\)
b: \(\left|3x+\dfrac{1}{5}\right|-\dfrac{1}{3}=\dfrac{2}{3}\)
\(\Leftrightarrow\left|3x+\dfrac{1}{5}\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+\dfrac{1}{5}=1\\3x+\dfrac{1}{5}=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{4}{5}\\3x=-\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{15}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
d: \(\left|\dfrac{1}{2}x-3\right|< \dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x-3>-\dfrac{1}{2}\\\dfrac{1}{2}x-3< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x>\dfrac{5}{2}\\\dfrac{1}{2}x< \dfrac{7}{2}\end{matrix}\right.\Leftrightarrow5< x< 7\)
e: \(\left|3x-\dfrac{4}{5}\right|>\dfrac{1}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{4}{5}>\dfrac{1}{3}\\3x-\dfrac{4}{5}< -\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x>\dfrac{17}{15}\\3x< \dfrac{7}{15}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{17}{45}\\x< \dfrac{7}{45}\end{matrix}\right.\)