Tìm GTNN của G = \(1-\sqrt{\left(1-6x+9x^2\right)}+\left(3x-1\right)^2\)
giải pt:
a,\(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
b,\(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
Tìm GTNN của bt:
\(A=1-\sqrt{1-6x+9x^2}+\left(3x-1\right)^2\)
Với gt nào của x, bt sau đạt GTNN
\(A=1-\sqrt{1-6x+9x^2}+\left(3x-1\right)^2\)
Lời giải:
Ta có:
\(A=1-\sqrt{1-6x+9x^2}+(3x-1)^2=1-\sqrt{(3x-1)^2}+(3x-1)^2\)
\(=1-|3x-1|+|3x-1|^2=1-t+t^2\) (đặt \(t=|3x-1|, t\geq 0)\)
\(=(t-\frac{1}{2})^2+\frac{3}{4}\)
Ta thấy \((t-\frac{1}{2})^2\geq 0, \forall t\geq 0\)
\(\Rightarrow A=(t-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}\)
Vậy $A$ đạt min bằng $\frac{3}{4}$. Giá trị này đạt được tại $t=\frac{1}{2}\Leftrightarrow |3x-1|=\frac{1}{2}$
\(\Leftrightarrow \left[\begin{matrix} 3x-1=\frac{1}{2}\\ 3x-1=-\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=\frac{1}{6}\end{matrix}\right.\)
Bạn chú ý lần sau không đăng 1 bài nhiều lần tránh làm loãng box toán.
Giải các phương trình :
a) \(3x^2-6x-4=4\left(x-1\right)\sqrt{3x+1}\)
b) \(\sqrt{6x-1}+\sqrt{9x^2-1}=6x-9x^2\)
c) \(3\left(\sqrt{2x-1}+\sqrt{x+3}\right)-2\sqrt{2x^2+5x-3}=3x+4\)
x=0 ; x=2/3 - cau b
anh giai tu giai thu
Tìm giá trị nhỏ nhất của \(A=1-\sqrt{1-6x+9x^2}+\left(3x-1\right)^2\)
\(A=1-\sqrt{1-6x+9x^2}+\left(3x-1\right)^2\)
\(A=1-\sqrt{\left(3x-1\right)^2}+\left(3x-1\right)^2\)
\(A=1-\left(3x-1\right)+\left(3x-1\right)^2\)
\(A=1-3x+1+9x^2-6x+1\)
\(A=9x^2-9x+3\)
\(A=\left(3x\right)^2-2.3x.\frac{9}{6}+\frac{81}{36}-\frac{27}{36}\)
\(A=\left(3x-\frac{9}{6}\right)^2-\frac{27}{36}\)
\(A=\left(3x-\frac{9}{6}\right)^2-\frac{3}{4}\ge0\forall x\)
Dấu = xảy ra khi:
\(3x-\frac{9}{6}=0\Leftrightarrow3x=\frac{9}{6}\Leftrightarrow x=0,5\)
Vậy Amin = -3/4 tại x = 0,5
A=1-\(\sqrt{\left(3x-1\right)^2}\)+(3x-1)^2
A=1-/3x-1/+(3x-1)^2
đặt t=/3x-1/ với t>=0
khi đó A=t^2-t+1
A=t^2-t+1/4+3/4
A=(t-1/2)^2+3/4
khi đó A>=3/4
dấu bằng xảy ra khi t=1/2 hay x=1/2
Chúc bạn học tốt!
\(A=1-\sqrt{\left(3x-1\right)^2}+\left(3x-1\right)^2\)
\(A=\left(3x-1\right)^2-\left|3x-1\right|+1\)
+) Với \(x\ge\frac{1}{3}\)\(\Rightarrow\)\(A=\left(3x-1\right)^2-\left(3x-1\right)+\frac{1}{4}+\frac{3}{4}=\left(3x-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=\frac{1}{2}\) ( tm )
+) Với \(x< \frac{1}{3}\)\(\Rightarrow\)\(A=\left(3x-1\right)^2+\left(3x-1\right)+\frac{1}{4}+\frac{3}{4}=\left(3x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=\frac{1}{6}\) ( tm )
Vậy GTNN của \(A=\frac{3}{4}\) khi \(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)
tìm a,b để đa thứ f(x) chia hết cho đa thức g(x)
\(a.f\left(x\right)=x^4-9x^3+21x^2+ax+b: g\left(x\right)=x^2-x-1\)
\(b.f\left(x\right)=x^4-x^3+6x^2-x+a: g\left(x\right)=x^2-x+5\)
\(c.f\left(x\right)=3x^3+10x^2-5+a: g\left(x\right)=3x+1\)
em chưa cho đa thức f(x) và g(x) nà
a: \(\dfrac{f\left(x\right)}{g\left(x\right)}\)
\(=\dfrac{x^4-9x^3+21x^2+ax+b}{x^2-x-1}\)
\(=\dfrac{x^4-x^3-x^2-8x^3+8x^2+8x+14x^2-14x-14+\left(a+6\right)x+b+14}{x^2-x-1}\)
\(=x^2-8x+14+\dfrac{\left(a+6\right)x+b+14}{x^2-x-1}\)
Để f(x) chia hết cho g(x) thì a+6=0 và b+14=0
=>a=-6 và b=-14
b: \(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4-x^3+5x^2+x^2-x+5+a-5}{x^2-x+5}\)
\(=x^2+1+\dfrac{a-5}{x^2-x+5}\)
Để f(x) chia hết g(x) thì a-5=0
=>a=5
Tìm x:
a) \(3x\left(3x-8\right)-9x^2+8=0\)
b)\(6x-15-x\left(5-2x\right)=0\)
c) \(x^3-16x=0\)
d) \(2x^2+3x-5=0\)
e) \(3x^2-x\left(3x-6\right)=36\)
f) \(\left(x+2\right)^2-\left(x-5\right)\left(x+1\right)=17\)
g) \(\left(x-4\right)^2-x\left(x+6\right)=9\)
h) \(4x\left(x-1000\right)-x+1000=0\)
i) \(x^2-36=0\)
j) \(x^2y-2+x+x^2-2y+xy=0\)
k) \(x\left(x+1\right)-\left(x-1\right).\left(2x-3\right)=0\)
l) \(3x^3-27x=0\)
TÌM GTNN
\(A=\sqrt{x^2+2x+1}+\sqrt{9x^2-6x+1}\)
\(B=3x^2-6x+1\)
\(C=2x-3\sqrt{x}\left(x>=0\right)\)
\(A=\sqrt{\left(x+1\right)^2}+\sqrt{\left(3x-1\right)^2}=\left|x+1\right|+\left|3x-1\right|\)
Với \(x\le-1:A=-x-1-3x+1=-4x\)
Để A nhỏ nhất thì x lớn nhất => x = -1 => A = 4
Với -1 < x <= 1/3: \(A=x+1-3x+1=2-2x\)
Để A nhỏ nhất thì x lớn nhất => x = 1/3 => A = 4/3
Với x > 1/3: \(A=x+1+3x-1=4x\)
Do x > 1/3 => A > 4/3
=> A min = 4/3 <=> x = 1/3
\(B=3\left(x^2-2x+\frac{1}{3}\right)=3\left[\left(x^2-2x+1\right)-\frac{2}{3}\right]=3\left(x-1\right)^2-2\)
=> Vì 3(x-1)^2 >= 0 => B >= -2
B min = -2 <=> 3(x-1)^2 = 0 <=> x = 1
\(C=2\left(x-\frac{3}{2}\sqrt{x}\right)=2\left[\left(x-2.\frac{3}{4}\sqrt{x}+\frac{9}{16}\right)-\frac{9}{16}\right]=2\left(\sqrt{x}-\frac{3}{4}\right)^2-\frac{9}{8}\)
=> C >= -9/8
C min = -9/8 <=> căn x = 3/4 => x = 9/16