tìm các số x,y,z \(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
tìm các số x, y, z biết
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
Ta có: \(\left(3x-5\right)^{2006}\ge0\)với mọi x
\(\left(y^2-1\right)^{2008}\ge0\)với mọi y
\(\left(x-z\right)^{2100}\ge0\) với mọi x,z
\(\Rightarrow\)\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}\ge0\)với mọi x
Mà \(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
\(\Rightarrow\left(3x-5\right)^{2006}=0;\left(y^2-1\right)^{2008}=0;\left(x-y\right)^{2100}=0\)
Xét:
\(\left(3x-5\right)^{2006}=0\hept{\begin{cases}3x-5=0\\3x=5\\x=\frac{5}{3}\end{cases}}\)
Xét:
\(\left(y^2-1\right)^{2008}=0\hept{\begin{cases}y^2-1=0\\y^2=1\\y=1hoac-1\end{cases}}\)
Xét:
\(\left(x-z\right)^{2100}=0\hept{\begin{cases}x-z=0\\\frac{5}{3}-z=0\\z=\frac{5}{3}\end{cases}}\)
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
\(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=z=\frac{5}{3}\\y=1\end{cases}}\)
Tìm các số x,y,z biết :
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
\(\left(3x-5\right)^{2006}\ge0;\left(y^2-1\right)^{2008}\ge0;\left(x-z\right)^{2100}\ge0\) với mọi x,y,z
mà theo đề:......=0
\(\Rightarrow\left(3x-5\right)^{2006}=0\Rightarrow3x-5=0\Rightarrow3x=5\Rightarrow x=\frac{5}{3}\)
\(y^2-1=0\Rightarrow y^2=1\Rightarrow y\in\left\{-1;1\right\}\)
\(\left(x-z\right)^{2100}=0\Rightarrow x-z=0\Rightarrow x=z\Rightarrow z=\frac{5}{3}\)
vậy...
tìm các số x,y,z biết
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2010}=0\)
Tìm x,y,z biết
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
Ta có:
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
Vì \(\left\{{}\begin{matrix}\left(3x-5\right)^{2006}\ge0\\\left(y^2-1\right)^{2008}\ge0\\\left(x-z\right)^{2100}\ge0\end{matrix}\right.\)
\(\Rightarrow\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-5\right)^{2006}=0\\\left(y^2-1\right)^{2008}=0\\\left(x-z\right)^{2100}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-5=0\\y^2-1=0\\x-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=\pm1\\z=\dfrac{5}{3}\end{matrix}\right.\)
Vậy ...
Chúc bạn học tốt!
1, Tìm x,y,z biết
a, \(\left(3.x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
Vì \(\left(3x-5\right)^{2006}\ge0\) ; \(\left(y^2-1\right)^{2008}\ge0\) ; \(\left(x-z\right)^{2100}\ge0\)
\(\Rightarrow\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y^2=1\\z=\frac{5}{3}\end{cases}}\)<=> x = z = 5/3 và y = 1 hoặc y = -1
Vậy....
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
Ta có:
\(\hept{\begin{cases}\left(3x-5\right)^{2006}\ge0\\\left(y^2-1\right)^{2008}\ge0\\\left(x-z\right)^{2100}\ge0\end{cases}}\)
\(\Leftrightarrow\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
Dấu "=" xảy ra:
\(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x=5\\y^2=1\\x-z=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=\pm1\\z=\frac{5}{3}\end{cases}}\)
Vây khi x = \(\frac{5}{3}\); y = \(\pm1\), z = \(\frac{5}{3}\)thì biểu thức trên có giá trị bằng 0.
Chúc em học tốt nhé!!!
tìm x,y,z
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
tuyển thành viên team (toán học ) ai yêu thích toán học vào team mk nha
ko ném đá nha
Ta có: (3x - 5)2006 ≥ 0 \(\forall\)x
(y2 - 1)2008 ≥ 0 \(\forall\)y
(x - z)2100 ≥ 0 \(\forall\)x, z
=> (3x - 5)2006 + (y2 - 1)2008 + (x - z)2100 ≥ 0 \(\forall\)x, y, z
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(3x-5\right)^{2006}=0\\\left(y^2-1\right)^{2008}=0\\\left(x-z\right)^{2100}=0\end{cases}\Rightarrow}\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y^2=1\\x=z=\frac{5}{3}\end{cases}}}\)
Giải y2 = 1 => y = 1 hoặc y = -1
Ủa sao hồi nãy cái biểu thức kia bằng d chứ có phải bằng 0 đâu ta ???
a) \(\left(3.x-5\right)^{2006}+\left(y-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
b)\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x^2+y^2+z^2=116\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Leftrightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{116}{29}=4\)
\(\Rightarrow\hept{\begin{cases}x^2=4.4=16\Leftrightarrow x=4\\y^2=4.9=36\Leftrightarrow y=6\\z^2=4.16=64\Leftrightarrow z=8\end{cases}}\)
a) Vì \(\left(3x-5\right)^{2006}\ge0\forall x;\left(y-1\right)^{2008}\ge\forall y;\left(x-z\right)^{2100}\ge0\forall x;z\)
Nên \(\left(3x-5\right)^{2006}+\left(y-1\right)^{2008}+\left(x-z\right)^{2100}=0\Leftrightarrow\hept{\begin{cases}\left(3x-5\right)^{2006}=0\\\left(y-1\right)^{2008}=0\\\left(x-z\right)^{2100}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y-1=0\\x-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=1\\z=\frac{5}{3}\end{cases}}\). Vậy x = 5/3; y = 1; z = 5/3
b) Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=k\)
Áp dụng t/s dãy tỉ số bằng nhau : \(k=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\) ( vì x2+y2+z2=116)
Do đó : \(\frac{x^2}{4}=4\Rightarrow x^2=16\Rightarrow x=\pm4\)
\(\frac{y^2}{9}=4\Rightarrow y^2=36\Rightarrow y=\pm6\) và \(\frac{z^2}{16}=4\Rightarrow z^2=64\Rightarrow z=\pm8\)
Vậy các cặp (x;y;z) cần tìm là : x=4, y=6, z=8 và x= -4,y= -6,z= -8
Tìm x; y; z :
a) \(2009-\left|x-2009\right|=x\)
b) \(\left(2x-1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)
a: =>|x-2009|=2009-x
=>x-2009<=0
=>x<=2009
b: =>2x-1=0 và y-2/5=0 và x+y-z=0
=>x=1/2 và y=2/5 và z=x+y=1/2+2/5=5/10+4/10=9/10
Tìm x , y , z :
a) \(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2010}=0\)
b) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x^2+y^2+z^2=116\)
a)\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2010}=0\)
\(\Leftrightarrow\left(3x-5\right)^{2006}=0\Leftrightarrow3x-5=0\Leftrightarrow x=\frac{5}{3}\)
hay\(\left(y^2-1\right)^{2008}=0\Leftrightarrow y^2-1=0\Leftrightarrow y^2=1\Leftrightarrow y=\pm1\)
hay\(\left(x-z\right)^{2010}=0\Leftrightarrow x-z=0\Leftrightarrow\frac{5}{3}-z=0\Leftrightarrow z=\frac{5}{3}\)
V...\(x=\frac{5}{3},y=\pm1,z=\frac{5}{3}\)
b)Ta co:\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\)
Suy ra:\(\frac{x}{2}=4\Leftrightarrow x=8\)
\(\frac{y}{3}=4\Leftrightarrow y=12\)
\(\frac{z}{4}=4\Leftrightarrow z=16\)
V...