Cho A = x^2/x−1 Tìm x để A < 3
Cho biểu thức \(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\)
a) Rút gọn \(A\)
b) Tính \(A\) biết \(\left|x-3\right|=2\)
c) Tìm \(x\) để \(A=\dfrac{1}{2}\)
d) Tìm \(x\) để \(A>1\)
e) Tìm \(x\) nguyên để \(A\) có giá trị nguyên
f) Với \(x>1\). Tìm giá trị nhỏ nhất của \(A\).
a: \(E=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x\left(x-1\right)}\right)\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)
b: |x-3|=2
=>x-3=2 hoặc x-3=-2
=>x=5(nhận) hoặc x=1(loại)
Khi x=5 thì \(E=\dfrac{5^2}{5-1}=\dfrac{25}{4}\)
c: Để E=1/2 thì \(\dfrac{x^2}{x-1}=\dfrac{1}{2}\)
\(\Leftrightarrow2x^2-x+1=0\)
hay \(x\in\varnothing\)
f) \(A=\dfrac{x^2}{x-1}=\dfrac{x^2-x+x-1+1}{x-1}=\dfrac{x\left(x-1\right)+x-1+1}{x-1}=x+1+\dfrac{1}{x-1}=x-1+\dfrac{1}{x-1}+2\ge2\sqrt{\left(x-1\right).\dfrac{1}{x-1}}+2=4\)\(A=4\Leftrightarrow x=2\)
-Vậy \(A_{min}=4\)
cho A =(x-2)(x^2+2x+4)-(x+1)^3+3(x-1)(x+1)
a/rút gọn A
b/tìm x để |A|=A
c/tìm x để x.A=-3x^2+2
a/ \(A=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(A=x^3+8-\left[x^3+1+3x\left(x+1\right)\right]+3\left(x^2-1\right)\)
\(A=x^3+8-x^3-1-3x\left(x+1\right)+3x^2-3\)
\(A=-3x^2-3x+3x^2+4\)
\(A=4-3x\)
b/ Để \(\left|A\right|=A\)
=> \(A\ge0\)
<=> \(4-3x\ge0\)
<=> \(4\ge3x\)
<=> \(x\ge\frac{3}{4}\)
Vậy khi \(x\ge\frac{3}{4}\)thì \(\left|A\right|=A\).
Cho A=\(\dfrac{x+2}{x+3}\)- \(\dfrac{5}{x^2+x-6}\)+ \(\dfrac{1}{2-x}\)
a) Tìm điều kiện của x để A có nghĩa
b) Rút gọn A
c) Tìm x để A=\(\dfrac{-3}{4}\)
d) Tìm x để biểu thức A nguyên
Cho biểu thức:\(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x+2}{x-3\sqrt{x}+2}\)
a/ Tìm điều kiện để A có nghĩa và rút gọn A
b/ Tìm x để A>2
c/ Tìm số nguyên x sao cho A là số nguyên
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{4;1\right\}\end{matrix}\right.\)
Ta có: \(A=\dfrac{x-4\sqrt{x}+3-\left(2x-4\sqrt{x}-\sqrt{x}+2\right)+x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2x-4\sqrt{x}+5-2x+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
Cho biểu thức :A=\(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}\)
a) Tìm điều kiện để A có nghĩa và rút gọn A
b) Tìm x để A > 2
c) Tìm số nguyên x sao cho A là số nguyên
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{1;4\right\}\end{matrix}\right.\)
\(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\dfrac{1}{\sqrt{x}-2}\)
b: Để A>2 thì A-2>0
=>\(\dfrac{1-2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)
=>\(\dfrac{5-2\sqrt{x}}{\sqrt{x}-2}>0\)
=>\(\dfrac{2\sqrt{x}-5}{\sqrt{x}-2}< 0\)
TH1: \(\left\{{}\begin{matrix}2\sqrt{x}-5>0\\\sqrt{x}-2< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\sqrt{x}>\dfrac{5}{2}\\\sqrt{x}< 2\end{matrix}\right.\)
=>\(x\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}2\sqrt{x}-5< 0\\\sqrt{x}-2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\sqrt{x}< \dfrac{5}{2}\\\sqrt{x}>2\end{matrix}\right.\)
=>\(2< \sqrt{x}< \dfrac{5}{2}\)
=>4<x<25/4
c: Để A là số nguyên thì \(1⋮\sqrt{x}-2\)
=>\(\sqrt{x}-2\in\left\{1;-1\right\}\)
=>\(\sqrt{x}\in\left\{3;1\right\}\)
=>\(x\in\left\{1;9\right\}\)
kết hợp ĐKXĐ, ta được: x=9
Bài 1: Cho biểu thức A = x+2/x+3 - 5/x^2+x-6 + 1/2-x
a. Tìm điều kiện của x để A có nghĩa
b. Rút gọn A
c. Tìm x để A = -3/4
d. Tìm x để biểu thức A nguyên
Cái biểu thức A ban ghi rõ thì mình mới giải được chứ , ghi như thế ai hiểu mà giải.
\(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
Cho biểu thức
A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) + \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)-\(\dfrac{3\sqrt{x}+1}{x-1}\)
a) Rút gọn A
b) Tính giá trị của A khi x = 4 - \(2\sqrt{3}\)
c) Tìm x để A = \(\dfrac{1}{2}\)
d) Tìm x để A < 1
e) Tìm x \(\in\) Z để A nhận giá trị nguyên
f) Tìm GTNN của A
Bài 1: cho A= x^2+4x+4/x^2-4
a) tìm x để A=5/3
b) tìm x để A nguyên
Bài 2: cho x+1/x=3, tính:
a) x^2+1/x^2
b) x^5+1/x^5
a )\(A=\frac{x^2+4x+4}{x^2-4}=\frac{\left(x+2\right)^2}{x^2-2^2}=\frac{\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)}=\frac{x+2}{x-2}=\frac{5}{3}\)
<=> (x + 2).3 = (x - 2).5
<=> 3x + 6 = 5x - 10
<=> 3x - 5x = - 10 - 6
<=> - 2x = - 16
=> x = 8
b ) \(\frac{x+2}{x-2}=\frac{\left(x-2\right)+4}{x-2}=1+\frac{4}{x-2}\)
đến đây tự tìm đc
Bài 2 lớp 8 ko làm đc thì đi chết đi
a)\(\left\{{}\begin{matrix}x+3\ne0\\x^2+x-6\ne0\\2-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-3\\\left(x-3\right)\left(x-2\right)\ne\\2\ne x\end{matrix}\right.0\Leftrightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne2\end{matrix}\right.\)
b)\(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^3-x-6}+\dfrac{1}{2-X}\)
Bài 1: Cho A = 4x^2/4-x^2 + 2+x/2-x - 2-x/2+x
B = x-3/2x-x^2
a) Tính giá trị của B khi x = 4
b) Rút gọn A
c) Cho P = A : B, tìm x để P < 0
d) Tìm x để P = -1
e) Tìm x thuộc Z để A có giá trị nguyên
f) Tìm GTNN của P khi x > 3
g) Đặt Q = 4/P, so sánh Q và 1
Bài 2: Cho A = ( 3-x/x+3 . x^2+6x+9/x^2-9 + x/x+3 ) : 3x^2/x+3
a) Rút gọn A
b)Tính A, biết x^2-1=0
c) Tìm x để A < -1
e) Tìm x để A = x/8