TÌM CẶP SỐ NGUYÊN x,y thỏa mãn :
a, x^2 +y^2 -10x - 6y +34 =0
Tìm tất cả các cặp số nguyên \(\left(x;y\right)\) thỏa mãn: \(10x^2+50y+42xy+14x-6y+57< 0\)
Tìm tất cả cặp số nguyên x,y thỏa mãn
10x2+50y2+42xy+14x-6y+57<0
biến đổi: VT=\(\left(3x+7y\right)^2+\left(x+7\right)^2+\left(y-3\right)^2< 1\)
Mà \(x,y\in Z\)Nên VT\(\in Z\)=> VT=0
Vậy: \(\hept{\begin{cases}3x+7y=0\\x+7=0\\y-3=0\end{cases}}\)<=>\(\hept{\begin{cases}x=-7\\y=3\end{cases}}\)
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn:
10x2+50y2+42xy+14x-6y+57<0
\(9x^2+42xy+49y^2+x^2+14x+49+y^2-6y+9-1<0\)
\(\left(3x+7y\right)^2+\left(x+7\right)^2+\left(y-3\right)^2<1\)
Vậy y=3; x=-7
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn
\(10x^2+50y^2+42xy+14x-6y+57<0\)
\(VT=9x^2+2\cdot3x\cdot7y+49y^2+x^2+2\cdot x\cdot7+49+y^2-2\cdot y\cdot3+9-1.\)
\(=\left(3x+7y\right)^2+\left(x+7\right)^2+\left(y-3\right)^2-1\)
VT >= -1 với mọi x;y. Để VT <0 thì :\(\hept{\begin{cases}3x+7y=0\\x+7=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-7\\y=3\end{cases}}\)
Bài 1 Tìm cặp số (x;y) thỏa mãn biểu thức sau
2x^2+y^2-2xy-10x+6y+13=0
x^2+7y^2-4xy-2x-2y+4=0
11x^2+y^2-6xy-14x+2y+9=0
a, Cho a,b,c là độ dài ba cạnh của một tam giác. CMR,
\(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
b, Tìm tất cả các cặp số nguyên (x;y) thỏa mãn:
\(10x^2+50y^2+42xy
+14x-6y+57< 0\)
tìm các cặp số nguyên (x;y) thỏa mãn: \(x^2\)-5xy +6y^2+1=0
tìm cặp số nguyên x, y thỏa mãn `x^2 +xy-6y^2 +x+13y=17`
Lời giải:
$x^2+xy-6y^2+x+13y=17$
$\Leftrightarrow x^2+x(y+1)-(6y^2-13y+17)=0$
Coi đây là pt bậc 2 ẩn $x$ thì để pt có nghiệm nguyên thì:
$\Delta = (y+1)^2+4(6y^2-13y+17)$ là scp
$\Leftrightarrow 25y^2-50y+69$ là scp
Đặt $25y^2-50y+69=t^2$ với $t$ là số tự nhiên
$\Leftrightarrow (5y-5)^2+44=t^2$
$\Leftrightarrow 44=(t-5y+5)(t+5y-5)$
Đến đây là dạng pt tích đơn giản rồi. Bạn có thể tự giải.
Ttìm cặp số x, y nguyên thỏa mãn 5x^2 +y^2 -2xy+2x-6y+1<0
Tìm cặp số x,y thỏa 5x^2 +2y+y^2 -4x-40=0
Giải hệ phương trình sau:
xy(x-y)=2
9xy(3x-y)+6=26x^3 -2y^3
5x2+2y+y2-4x-40=0
△=(-4)2-4.5.(2y+y2-40)
△=16-40y-20y2+800
△=-(784+40y+20y2)
△=-(32y+8y+16y2+4y2+16+4+764)
△=-[(4y+4)2+(2y+2)2+764]<0
=>PHƯƠNG TRÌNH VÔ NGHIỆM.