\(x^2-2.5x+5^2+y^2-2.3y+3^2=0\)
\(\Leftrightarrow\left(x-5\right)^2+\left(y-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=5\\y=3\end{cases}}\)
(x2 - 10x + 25 ) +( y2 - 6y+ 9 ) = 0
(x - 5)2 + ( y - 3 )2 =0
=> x =5
y = 3
\(x^2-2.5x+5^2+y^2-2.3y+3^2=0\)
\(\Leftrightarrow\left(x-5\right)^2+\left(y-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=5\\y=3\end{cases}}\)
(x2 - 10x + 25 ) +( y2 - 6y+ 9 ) = 0
(x - 5)2 + ( y - 3 )2 =0
=> x =5
y = 3
Tìm tất cả cặp số nguyên x,y thỏa mãn
10x2+50y2+42xy+14x-6y+57<0
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn:
10x2+50y2+42xy+14x-6y+57<0
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn
\(10x^2+50y^2+42xy+14x-6y+57<0\)
Bài 1 Tìm cặp số (x;y) thỏa mãn biểu thức sau
2x^2+y^2-2xy-10x+6y+13=0
x^2+7y^2-4xy-2x-2y+4=0
11x^2+y^2-6xy-14x+2y+9=0
a, Cho a,b,c là độ dài ba cạnh của một tam giác. CMR,
\(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
b, Tìm tất cả các cặp số nguyên (x;y) thỏa mãn:
\(10x^2+50y^2+42xy
+14x-6y+57< 0\)
Tìm cặp số nguyên (x; y) thỏa mãn phương trình: 5x^4+ 10x^2+ 2y^6+ 4y^3 -6 = 0
tìm cặp số (x,y) thỏa mãn: x^2 + 10x + 26 + y^2 + 2y = 0
tìm cặp x,y thỏa mãn
x^2 +3xy+2y^2 +3x+6y−4 = 0.
Tìm x , y :
a) x^2 + y^2 + 10x + 6y + 34 = 0
b) 25x^2 + 4y^2 + 10x + 4y + 2 = 0