rut gon bieu thuc [(x^3+y^3)-2(x^2-y^2)+3(x+y)^2]:(x+y)
B1: rut gon bieu thuc
a, (x+y)^2-4(x-y)^2
b, 2(x-y)(x+y)+(x+y)^2+(x-y)^2
B2: tim X
a, (2X-1)^2-4(X+2)^2=9
b, 3(X-1)^2-3X(X-5)=21
B3: Cho bieu thuc
M=(x+3)^3-(x-1)^3+12x(x-1)
a, Rut gon bieu thuc tren
b, Tinh gia tri M tai x=-2/3
c, Tim x de M=16
1)a)=>x2+y2+2xy-4(x2-y2-2xy)
=>x2+y2+2xy-4.x2+4y2+8xy
=>-3.x2+5y2+10xy
Rut gon cac bieu thuc sau
A) 2x^2(1-3x)+6x^3
B) (x-y)^2+(x+y)^2+2(x-y)(x+y)
A) 2x2(1-3x)+6x3
=2x2*(1-3x)+2x2*3x
=2x2*(1-3x+3x)
=2x2
B) (x-y)2+(x+y)2+2(x-y)(x+y)
=2(x2-y2)+x2+2xy+y2+x2-2xy+y2
=2x2-2y2+x2+2xy+y2+x2-2xy+y2
=4x2
rut gon bieu thuc sau : P=2(x+y)(x-y)-(x-y)^2+(x+y)^2-4y^2
\(P=2\left(x^2-y^2\right)-x^2+2xy-y^2+x^2+2xy+y^2-4y^2\)
\(=2\left(x^2-y^2\right)-4y^2+4xy\)
\(=2x^2-2y^2-4y^2+4xy\)
=2x^2+4xy-6y^2
rut gon bieu thuc
B= \(\frac{x^3-y^3-z^3-3xyz}{\left(x+y\right)^2+\left(y-z\right)^2+\left(x+z\right)^2}\)
(x-y+3√x+3√y)/(√x-√y+3) rut gon bieu thuc, khó đấy cần gấp
Rut gon bieu thuc sau:
\(\frac{x^3y-xy^3+y^3z-yz^3+z^3x-x^3z}{x^2y-xy^2+y^2z-yz^2+z^2x-zx^2}\)
Hên xui thôi ( cái này không có chắc lắm )
\(\frac{x^3-xy^3+y^3z-yz^3+z^3x-x^3z}{x^2y-xy^2+y^2z-yz^2+z^2x-zx^2}\)
\(=xy-xy+xy-yz+zx-x^3\)\(z\)\(-\)\(zx^2\)
\(=xy-yz-zx-x^3\)\(z\)
phần trên sai rồi cho xin lỗi ( trình bày lại )
bạn ghi lại đề nha
= xy - xy + yz - yz + zx - x^3z - zx^2
= -zx - x^3z
Thuc hien phep nhan rut gon roi tinh gia tri bieu thuc
B)x(x^2-y)-x^2(x+y)+y(x^2-x) tai x=1/2 va y=-100
=x^3-xy-x^3-x^2y+x^2y--xy
=-2xy
thay x=1\2 va y bang 100 vao Bta duoc
B= -2.1\2.100=-100
Rut gon cac bieu thuc sau:
a,(x-2y)^2+(x+2y)^2
b,2(x-y).(x+y) +(x+y)^2+(x-y)^2
a) \(\left(x-2y\right)^2+\left(x+2y\right)^2=x^2-4xy+4y^2+x^2+4xy+4y^2=2x^2+8y^2\)
b) \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2=2\left(x^2-y^2\right)+x^2+2xy+y^2+x^2-2xy^2+y^2\)
\(=2x^2-2y^2+2x^2+2y^2=4x^2\)
\(a,\left(x-2y\right)^2+\left(x+2y\right)^2\)
\(=\left(x^2-4xy+4y^2\right)
+\left(x^2+4xy+4y^2\right)\)
\(=2x^2+8y^2\)
\(b,2\left(x-y\right).\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
\(=2\left(x^2-y^2\right)+\left(x^2+2xy+y^2\right)+\left(x^2-2xy+y^2\right)\)
\(=2x^2-2y^2+2x^2+2y^2\)
\(=4x^2\)
a)\(\left(x-2y\right)^2+\left(x+2y\right)^2\)
\(=x^2-4xy+4y^2+x^2+4xy+y^2\)
\(=2\left(x^2+y^2\right)\)
b)\(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
\(=\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x+y-x+y\right)^2=y^2\)
rut gon bieu thuc
p=(x^2+2xy)^2+2(x^2+2xy)y^2+y^4
\(P=\left(x^2+2xy\right)^2+2\left(x^2+2xy\right)y^2+y^4\)
\(=x^4+4x^3y+4x^2y^2+2x^2y^2+4xy^3+y^4\)
\(=x^4+y^4+6x^2y^2+4x^3y+4xy^3\)
P = ( x2 + 2xy )2 + 2( x2 + 2xy )y2 + y4
= ( x2 + 2xy )2 + 2( x2 + 2xy )y2 + ( y2 )2
= ( x2 + 2xy + y2 )2
= [ ( x + y )2 ]2
= ( x + y )4
Bài làm :
Ta có :
P = ( x2 + 2xy )2 + 2( x2 + 2xy )y2 + y4
P = ( x2 + 2xy )2 + 2( x2 + 2xy )y2 + ( y2 )2
P = ( x2 + 2xy + y2 )2
P = [ ( x + y )2 ]2
P = ( x + y )4
Vậy P = (x + y)4