Cho tam giác ABC, AB < AC, AD là phân giác của góc A. Lấy AM sao cho AM =AB
a. Chứng minh tam giác ADB=tam giác ADM
b. AB lấy N ao cho AN=AC. So sánh góc DBN và góc DNC
c. Chứng minh tam giác DBN = tam giác DMC
d. Chứng minh 3 điểmN, D, M thẳng hàng
1/Cho tam giác nhọn ABC. Trên tia đối AB lấy D sao cho AB=AD. Lấy điểm E sao cho A là Trung điểm CE.
a. C/m DE//BC
b. Gọi M,N lần lượt là Trug điểm BC và DE. C/m A là trung điểm MN.
2/ Cho Tam giác ABC, AB < AC. AE là tia phân giác của góc A. ( E thuộc BC) Trên AC lấy D sao cho AD=AB.
a. C/m BE = ED.
b. C/m AE vuông góc BD.
3/ Cho tam giác nhọn ABC, AB < AC. AD là tia phân giác góc A. ( D thuộc BC) .Lấy M thuộc AC sao cho AM=AB.
a. C/m tam giác ADB=ADM
b. Trên tia AB lấy N sao cho AN=AC. SO SÁNH góc DBN và góc DMC.
c. C/m tam giác DBN=DMC
d. C/m N,D,M thẳng hàng.
Giúp với ạ <3
Bài 1: Cho tam giác ABC. Lấy M,N thuộc BC sao cho BM=CN. Chứng minh: AM+AN < AB+AC.
Bài 2: Cho tam giác ABC, góc B > góc C. Phân giác AD. So sánh DB và DC.
Bài 3: Cho tam giác ABC, góc B > góc C. Phân giác AD. M thuộc AD. So sánh (MB - MC) và (AB - AC).
Câu 1)
A )Ta có tam giác ABC cân tại A
=> \(\widehat{ABC}=\widehat{ACB}\)
Và AB = AC
Xét hai tam giác vuông BCK và CBH ta có :
BC chung
\(\widehat{KBC}=\widehat{BCH}\)
=>BCK = CBH (cạnh huyền - góc nhọn )
=>BH = CK (đpcm)
B) ta có BCK = CBH
=> \(\widehat{HBC}=\widehat{KCB}\)
=> \(\widehat{ABH}=\widehat{ACK}\)
=> tam giác OBC cân tại O
=> BO = CO
Xét tam giác ABO và tam giác ACO
AB = AC
BO = CO (cmt)
\(\widehat{ABH}=\widehat{ACK}\)
=> ABO=ACO (c-g-c)
=> \(\widehat{BAO}=\widehat{CAO}\)
=> AO là phân giác góc ABC (đpcm)
C) ta có
AI là phân giác góc ABC
Mà tam giác ABC cân tại A
=> AI vuông góc với cạnh BC (đpcm)
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC.
a) Chứng minh :tam giác ABC = tam giác ABD từ đó suy ra AD là tia phân giác của góc BAC
b) Chứng minh : AD vuông góc BC
c) Trên cạnh AB và cạnh AC lần lượt lấy hai điểm M,N sao cho AM=AN. Gọi K là giao điểm của AD và MN. Chứng minh AD vuông góc với MN
d) Gọi O là trung điểm của BM, trên tia đối của tia OD lấy điểm P sao cho OD=OP.
Chứng minh rằng : ba điểm M,N,P thẳng hàng
Cho tam giác ABC vuông cân tại A. Tia phân giác của góc B cắt AC tại D, DN vuông góc với BC tại N.
a). Chứng minh tam giác DBA = tam giác DBN. So sánh DA và DC
b). Gọi M là giao điểm của hai đường thẳng ND và BA. Chứng minh AM = NC c). Chứng minh tam giác BMC cân
d). Gọi I là trung điểm của MC. Chứng minh ba điểm B, D, I thẳng hàng
Cho tam giác ABC (AB < AC) có Am là phân giác của góc A (M thuộc BC). Trên AC lấy D sao cho AD = AB.
a) Chứng minh: BM = MD.
b) Gọi K là giao điểm của AB và DM. Chứng minh: tam giác DAK = tam giác BAC.
c) Chứng minh: tam giác AKC cân.
d) So sánh: BM và CM.
a: Xét ΔABM và ΔADM có
AB=AD
góc BAM=góc DAM
AM chung
Do đó: ΔABM=ΔADM
SUy ra: MB=MD
b: Xét ΔDAK và ΔBAC có
góc ADK=góc ABC
AD=AB
góc DAK chung
Do đó: ΔDAK=ΔBAC
c: Xét ΔAKC có AK=AC
nên ΔAKC cân tại A
d: Xét ΔABC có AM là phân giác
nên BM/AB=CM/AC
mà AB<AC
nên BM<CM
cho tam giác ABC có AB<BC.Tia phân giác của góc BAC cắt BC tại D.Trên cạnh AC lấy điểm M sao cho AM=AB
a,Chứng minh tam giác ABD=tam giác AMD
b,Chứng minh DB=DM và góc ABD=góc AMD
c, kéo dài AB và MD cắt nhau tại N. Chứng minh tam giác BDM= tam giác MDC
d,chứng minh AD vuông góc BM và BM song song NC
bạn tự vẽ hình nhé
vì AD là phân giác của \(\widehat{BAC}\) ⇒ \(\widehat{BAD}=\widehat{MAD}\) =\(\dfrac{\widehat{BAC}}{2}\)
a) xét ΔABD và ΔAMD, có:
AM=AB (gt)
\(\widehat{BAD}=\widehat{MAD}\) (cmt)
AD chung
⇒ ΔABD = ΔAMD (c.g.c) (đpcm)
b) Từ ΔABD = ΔAMD (cmt)
⇒ BD=DM( 2 cạnh t/ứng) (đpcm)
\(\widehat{ABD}=\widehat{AMD}\) (2 góc t/ứng)(đpcm)
c) phần này có lẽ đề bài sai , phải là c/m Δ BDN =ΔMDC mới đúng.
vì \(\widehat{ABD}=\widehat{AMD}\) (cmt) ⇒ \(\widehat{DBN}=\widehat{DMC}\) ( do \(\widehat{ABD}\) và \(\widehat{DBN}\) là 2 góc kề bù; \(\widehat{AMD}\) và \(\widehat{DMC}\)là 2 góc kề bù)
vì \(\widehat{BDN}\) và \(\widehat{MDC}\) là 2 góc đối đỉnh⇒ \(\widehat{BDN}\) =\(\widehat{MDC}\)
Xét Δ BDN và ΔMDC, có:
\(\widehat{BDN}\) =\(\widehat{MDC}\)(cmt)
BD=DM (cmt)
\(\widehat{DBN}=\widehat{DMC}\) (cmt)
⇒Δ BDN = ΔMDC (g.c.g) (đpcm)
d) từ Δ BDN = ΔMDC (cmt) ⇒ BN=MC
mà AB=AM ⇒ AB+BN =AM+MC
⇔AN=AC.⇒ Δ ANC cân tại A.
và AB=AM(gt) ⇒ ΔABM cân tại A
mà AD là phân giác của \(\widehat{BAM}\) ⇒ AD vừa là phân giác vừa là đường cao của ΔABM⇔ AD ⊥ BM(đpcm)
Vì Δ ANC cân tại A (cmt)
AD là phân giác của \(\widehat{NAC}\) ⇒ AD vừa là phân giác vừa là đường cao của ΔACN.⇔ AD⊥CN.
Mà AD⊥ BM⇒ BM//CN(đpcm)
Bổ sung hình để các bạn dễ hình dung:
1) Cho tam giác ABC có AB<AC. Tia phân giác của góc A cắt BC ở D. Trên cạnh AC lấy một điểm E sao cho AE = AB
a) C/m tam giác ABD = tam giác AED
b) C/m AD vuông góc với BE
c) Chứng minh góc ADB < góc ADC
2) Cho tam giác ABC có AB<AC, AD là tia phân giác của góc BAC ( D thuộc BC ). Trên cạnh AC lấy một điểm E sao cho AE = AB
a) C/m tam giác ADB = tam giác ADE
b) Gọi F là giao điểm của tia AB và tia ED. Chứng minh tam giác BFD = tam giác ECD
c) So sánh DB và DC
Cho tam giác ABC vuông tại A (AB < AC). Vẽ AD là tia phân giác của góc BAC (D thuộc BC). Trên đoạn AC lấy điểm H sao cho AH = AB. a) Chứng minh góc ADH = góc ADB b) Tia HD cắt AB tại E. Chứng minh : tam giác AHE = tam giác ABC và AD ^ EC c) Gọi G là trung điểm của ED. Tia AD cắt CG tại X. Chứng minh 3.DX < 2.DC
a) Xét tam giác ABD và tam giác AHD có:
AB = AH ( gt )
^BAD = ^CAD ( Do AD phân giác )
AD chung
=> Tam giác ABD = tam giác AHD ( c.g.c )
=> ^ABD = ^AHB ( hai góc tương ứng )
b) Xét tam giác AHE và tam giác ABC có:
AB = AH ( gt )
^ABC chung
^ABD = ^AHD ( cmt )
=> Tam giác AHE = tam giác ABC ( g.c.g )
Cho tam giác ABC vuông tại A có AB < AC. Vẽ AD là tia phân giác của góc BAC (D thuộc BC). Trên AC lấy điểm E sao cho AE = AB
a, Chứng minh rằng : Tam giác ADB tam giác ADE rồi suy ra góc ABD = gócAED
b, Tia ED cắt AB tại F. Chứng minh rằng : AC = AF
c, Gọi G là trung điểm của DF; AD cắt CF tại H và cắt CG tại I. Chứng minh rằng : DI = IH
a: Xét ΔADB và ΔADE có
AD chung
góc BAD=góc EAD
AB=AE
=>ΔADB=ΔADE
=>góc ABD=góc AED
b: Xét ΔAEF vuông tại A và ΔABC vuông tại A có
AE=AB
góc AEF=góc ABC
=>ΔAEF=ΔABC
=>AC=AF