Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Akira Vy
Xem chi tiết
Osaki Nguyễn
Xem chi tiết
Kazakirin
13 tháng 5 2020 lúc 20:30

Câu 1)

A )Ta có tam giác ABC cân tại A 

=> \(\widehat{ABC}=\widehat{ACB}\)

Và AB = AC

Xét hai tam giác vuông BCK và CBH ta có :

BC chung

\(\widehat{KBC}=\widehat{BCH}\)

=>BCK = CBH (cạnh huyền - góc nhọn )

=>BH = CK (đpcm)

B) ta có BCK = CBH

=> \(\widehat{HBC}=\widehat{KCB}\)

=> \(\widehat{ABH}=\widehat{ACK}\)

=> tam giác OBC cân tại O

=> BO = CO

Xét tam giác ABO và tam giác ACO 

AB = AC

BO = CO (cmt)

\(\widehat{ABH}=\widehat{ACK}\)

=> ABO=ACO (c-g-c)

=> \(\widehat{BAO}=\widehat{CAO}\)

=> AO là phân giác góc ABC (đpcm)

C) ta có

AI là phân giác góc ABC 

Mà tam giác ABC cân tại A

=> AI vuông góc với cạnh BC (đpcm)

Khách vãng lai đã xóa
Nguyễn Trúc
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 1 2022 lúc 17:32

undefined

Chu Hải Phương
Xem chi tiết
Thái Thanh Vân
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2022 lúc 23:51

a: Xét ΔABM và ΔADM có

AB=AD

góc BAM=góc DAM

AM chung

Do đó: ΔABM=ΔADM

SUy ra: MB=MD

b: Xét ΔDAK và ΔBAC có

góc ADK=góc ABC

AD=AB

góc DAK chung

Do đó: ΔDAK=ΔBAC

c: Xét ΔAKC có AK=AC
nên ΔAKC cân tại A

d: Xét ΔABC có AM là phân giác

nên BM/AB=CM/AC

mà AB<AC

nên BM<CM

Vũ Tuyết Nga
Xem chi tiết
Đõ Phương Thảo
21 tháng 12 2020 lúc 23:14

bạn tự vẽ hình nhé

vì AD là phân giác của \(\widehat{BAC}\) ⇒ \(\widehat{BAD}=\widehat{MAD}\) =\(\dfrac{\widehat{BAC}}{2}\)

a) xét ΔABD và ΔAMD, có:

AM=AB (gt)

\(\widehat{BAD}=\widehat{MAD}\) (cmt)

AD chung

⇒ ΔABD = ΔAMD (c.g.c) (đpcm)

b) Từ ΔABD = ΔAMD (cmt)

    ⇒ BD=DM( 2 cạnh t/ứng) (đpcm)

       \(\widehat{ABD}=\widehat{AMD}\) (2 góc t/ứng)(đpcm)

c) phần này có lẽ đề bài sai , phải là c/m Δ BDN =ΔMDC mới đúng.

vì \(\widehat{ABD}=\widehat{AMD}\) (cmt) ⇒ \(\widehat{DBN}=\widehat{DMC}\) ( do \(\widehat{ABD}\) và \(\widehat{DBN}\) là 2 góc kề bù; \(\widehat{AMD}\) và \(\widehat{DMC}\)là 2 góc kề bù)

vì \(\widehat{BDN}\) và \(\widehat{MDC}\) là 2 góc đối đỉnh⇒ ​​\(\widehat{BDN}\)​ =\(\widehat{MDC}\)

Xét Δ BDN và ΔMDC, có:

\(\widehat{BDN}\) =\(\widehat{MDC}\)(cmt)

BD=DM (cmt)

\(\widehat{DBN}=\widehat{DMC}\) (cmt)

⇒Δ BDN = ΔMDC (g.c.g) (đpcm)

d) từ Δ BDN = ΔMDC (cmt) ⇒ BN=MC

mà AB=AM ⇒ AB+BN =AM+MC

                    ⇔AN=AC.⇒ Δ ANC cân tại A.

và AB=AM(gt) ⇒ ΔABM cân tại A

      mà AD là phân giác của \(\widehat{BAM}\) ⇒ AD vừa là phân giác vừa là đường cao của ΔABM⇔ AD ⊥ BM(đpcm)

    Vì  Δ ANC cân tại A (cmt) 

         AD là phân giác của \(\widehat{NAC}\) ⇒ AD vừa là phân giác vừa là đường cao của ΔACN.⇔ AD⊥CN.

                Mà AD⊥ BM⇒ BM//CN(đpcm)

 

 

Akai Haruma
22 tháng 12 2020 lúc 1:43

Bổ sung hình để các bạn dễ hình dung:

undefined

Nguyễn Hoàng Khả Hân
Xem chi tiết
Long Gai Thiên
Xem chi tiết
Kaito Kid
22 tháng 3 2022 lúc 19:04

a) Xét tam giác ABD và tam giác AHD có:

AB = AH ( gt )

^BAD = ^CAD ( Do AD phân giác  )

AD chung 

=> Tam giác ABD = tam giác AHD ( c.g.c )

=> ^ABD = ^AHB ( hai góc tương ứng )

b) Xét tam giác AHE và tam giác ABC có:

AB = AH ( gt )

^ABC chung

^ABD = ^AHD ( cmt )

=> Tam giác AHE = tam giác ABC ( g.c.g )

Ngô Thị Thanh Hằng
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 6 2023 lúc 23:24

a: Xét ΔADB và ΔADE có

AD chung

góc BAD=góc EAD

AB=AE

=>ΔADB=ΔADE

=>góc ABD=góc AED

b: Xét ΔAEF vuông tại A và ΔABC vuông tại A có

AE=AB

góc AEF=góc ABC

=>ΔAEF=ΔABC

=>AC=AF