giải hệ phương trình
\(\left\{{}\begin{matrix}-2x+y=2\\2x-2y=1\end{matrix}\right.\)
Giải hệ phương trình sau bằng phương pháp thế
1) \(\left\{{}\begin{matrix}x-2y=4\\-2x+5y=-3\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}2x+y=10\\5x-3y=3\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}x+2y=4\\-3x+y=7\end{matrix}\right.\)
\(1,\Leftrightarrow\left\{{}\begin{matrix}x=2y+4\\-4y-8+5y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\cdot5+4=14\\y=5\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}5x-30+6x=3\\y=10-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\6y-12+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{7}\\y=\dfrac{19}{7}\end{matrix}\right.\)
giải hệ phương trình
1)\(\left\{{}\begin{matrix}3x+4y=11\\2x-y=-11\end{matrix}\right.\) 2)\(\left\{{}\begin{matrix}3x+2y=0\\2x+y=-1\end{matrix}\right.\) 3)\(\left\{{}\begin{matrix}3x+\dfrac{5}{2}y=9\\2x+\dfrac{1}{3}y=2\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}-x+3y=16\\2x+y=3\end{matrix}\right.\) 5)\(\left\{{}\begin{matrix}\dfrac{-3}{x-y}+\dfrac{5}{2x+y}=-2\\\dfrac{4}{x-y}-\dfrac{10}{2x+y}=2\end{matrix}\right.\) 6)\(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\)
1. \(\left\{{}\begin{matrix}3x+4y=11\\2x-y=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\8x-4y=-44\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\11x=-33\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=-3\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}3x+2y=0\\2x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2y=0\\4x+2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=-2\end{matrix}\right.\)
3.\(\left\{{}\begin{matrix}3x+\dfrac{5}{2}y=9\\2x+\dfrac{1}{3}y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+5y=18\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=12\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Giải hệ phương trình sau bằng cách cộng hệ số
1) \(\left\{{}\begin{matrix}x-y=5\\2x+y=11\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}3x+2y=1\\3x+y=2\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}x-y=2\\3x+2y=11\end{matrix}\right.\)
\(1,\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\2y+10+y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{16}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}3x=1-2y\\1-2y+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\3y+6+2y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
giải hệ phương trình
a) \(\left\{{}\begin{matrix}x+2y=2\\-2x+y=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}3x-2y=4\\2x+y=5\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}2y-x=2\\2x-y=-1\end{matrix}\right.\)
giúp tui giải bài này với tui c.ơn trước
b)\(\left\{{}\begin{matrix}3x-2y=4\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-2\left(5-2x\right)=4\\y=5-2x\end{matrix}\right.\)\(\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}3x-10+4x=4\\y=5-2x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=14\\y=5-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy nghiệm duy nhất của hpt là: (2;1)
c) \(\left\{{}\begin{matrix}2y-x=2\\2x-y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-2\\2\left(2y-2\right)-y=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-2\\4y-4-y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-2\\3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
Vậy nghiệm duy nhất của hpt là: (0;1)
a) \(\left\{{}\begin{matrix}x+2y=2\left(1\right)\\-2x+y=1\left(2\right)\end{matrix}\right.\)
Từ (1): \(x=2-2y\) (3)
Thế (3) vào (2), ta được: \(-2\left(2-2y\right)+y=1< =>-4+4y+y=1\)
\(\Leftrightarrow y=1\)\(\Rightarrow\)\(x=2-2.1=0\)
Vậy nghiệm duy nhất của hpt là: (0;1)
giải hệ phương trình \(\left\{{}\begin{matrix}2x\left(x-1\right)+\left(y-1\right)\left(2y+1\right)=0\\2y^2+2x+y+1=6xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2x+2y^2-y-1=0\\2y^2+2x+y+1-6xy=0\end{matrix}\right.\)
Cộng vế với vế:
\(2x^2+4y^2-6xy=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\)
Thế vào 1 trong 2 pt ban đầu
Đoán nhận hệ số nghiệm của mỗi hệ phương trình sau và giải thích vì sao:
a) \(\left\{{}\begin{matrix}2x+y=3\\3x-y=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}3x+2y=0\\2x-3y=0\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}3x+0y=6\\2x+y=1\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}x-y=4\\0x-y=2\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}x+2y=3\\2x+4y=1\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}x+y=1\\\dfrac{x}{2}+\dfrac{y}{2}=\dfrac{1}{2}\end{matrix}\right.\)
Mẫu câu a : Ta có: \(\dfrac{a}{a'}\ne\dfrac{b}{b'}\Leftrightarrow\dfrac{2}{3}\ne\dfrac{1}{-1}\), do đó hệ phương trình đã cho có 1 nghiệm duy nhất
giúp mk vs mn ơi! mk đang cần gấp
b: \(\dfrac{3}{2}< >\dfrac{2}{-3}\)
nên hệ có 1 nghiệm duy nhất
c: 3/2<>0/1
nên hệ có 1 nghiệmduy nhất
d: 0/1<>-1/-1
nên hệ có 1 nghiệm duy nhất
e: 1/2=2/4<>3/1
nên hệ ko có nghiệm
f: 1:1/2=1:1/2=1:1/2
nên hệ có vô số nghiệm
Giải hệ phương trình sau bằng phương pháp cộng đại số:
a) \(\left\{{}\begin{matrix}-x+2y=3\\3x+y=-1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2x+2\sqrt{3}y=1\\\sqrt{3}x+2y=-5\end{matrix}\right.\)
a) Ta có: \(\left\{{}\begin{matrix}-x+2y=3\\3x+y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3x+6y=9\\3x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=8\\-x+2y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{8}{7}\\-x=3-2y=3-2\cdot\dfrac{8}{7}=\dfrac{5}{7}\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=-\dfrac{5}{7}\\y=\dfrac{8}{7}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-\dfrac{5}{7}\\y=\dfrac{8}{7}\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}2x+2\sqrt{3}\cdot y=1\\\sqrt{3}x+2y=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{3}x+6y=\sqrt{3}\\2\sqrt{3}x+4y=-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y=\sqrt{3}+10\\\sqrt{3}x+2y=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{\sqrt{3}+10}{2}\\x\sqrt{3}+2\cdot\dfrac{\sqrt{3}+10}{2}=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{\sqrt{3}+10}{2}\\x\sqrt{3}=-5-\sqrt{3}-10=-15-\sqrt{3}\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=-1-5\sqrt{3}\\y=\dfrac{\sqrt{3}+10}{2}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-1-5\sqrt{3}\\y=\dfrac{\sqrt{3}+10}{2}\end{matrix}\right.\)
a, \(\left\{{}\begin{matrix}\\6x+2y=-2\end{matrix}\right.-6x+12y=18}\)
giải hệ phương trình
a
\(\left\{{}\begin{matrix}x+y=1\\x-y=-5\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}2x+2y=5\\x-2y=1\end{matrix}\right.\)
c.
\(\left\{{}\begin{matrix}2x+3y=5\\3x-2y=1\end{matrix}\right.\)
a, b và c có thể dùng phương pháp thế hoặc cộng trừ đại số
\(a,\left\{{}\begin{matrix}x=1-y\\1-y-y=-5\end{matrix}\right.=>\left\{{}\begin{matrix}x=1-y\\1-2y=-5\end{matrix}\right.=>\left\{{}\begin{matrix}x=1-y\\2y=6\end{matrix}\right.=>\left\{{}\begin{matrix}x=1-y\\y=3\end{matrix}\right.=>\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)
Kết luận hpt có 1 nghiệm duy nhất (x;y)=(-2;3)
b và c làm tương tự
a.\(\Leftrightarrow\left\{{}\begin{matrix}2x=-4\\x-y=-5\end{matrix}\right.\) ( cộng đại số bạn nhé )
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\-2-y=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)
b.\(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\x-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
c.\(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\9x-6y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}13x=13\\9x-6y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\9.1-6y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
a, \(\left\{{}\begin{matrix}x+y=1\\x-y=-5\end{matrix}\right.\)
\(\Leftrightarrow x+y+x-y=-4\)
\(\Leftrightarrow2x=-4\)
\(\Leftrightarrow x=-2\)
Thay \(x=-2\) vào \(x+y=1\)\(\Leftrightarrow-2+y=1\)\(\Leftrightarrow y=3\)
Vậy \(x=-2;y=3\)
Giải Hệ phương trình:
\(\left\{{}\begin{matrix}3\left(x+y\right)=\left(x+2y\right)\left(2x+y\right)\\\dfrac{1}{x+2y}+\dfrac{1}{\left(2x+y\right)^2}=3\end{matrix}\right.\)