Cho hình chữ nhật ABCD (AB < BC ) .XÁc định vị trí của điểm M trên đường thẳng AD sao cho góc AMB = góc BMC
cho hình chữ nhật ABCD (AB<BC) Xác định vị trí của điểm M trên đường thẳng AD sao cho gócAMB=góc BMC
Cho hình chữ nhật ABCD. O là giao điểm hai đường chéo và một điểm P bất kì trên đường chéo BD (P nằm giữa O và D). Gọi M là điểm đối xứng của C qua P. a) Chứng minh tứ giác AMDB là hình thang. Xác định vị trí của P trên BD để AMDB là hình thang cân. b) Kẻ ME vuông góc AD, MF vuông góc BA. Chứng minh EF // AC và 3 điểm E, F, P thẳng hàng. c) Xác định vị trí P trên BD để tứ giác nối 4 điểm A, M, D, B là hình thang cân. d) Nếu hình chữ nhật ABCD có AB = 2BC. Gọi K là điểm trên AB sao cho góc ADK = $15^o$. Chứng minh tam giác CDK cân.
Cho tam giác ABC. Xét các điểm M thuộc BC, N thuộc CA và P thuộc AB sao cho tứ giác APMN là một hình bình hành. Gọi O là giao điểm của các đường thẳng BN và CP. Xác định vị trí hình học của điểm M trên cạnh BC sao cho góc PMO= góc OMP
Gọi D là đỉnh thức tư của hình bình hành ABDC. Khi đó, O, M, D thẳng hàng.
Do giả thiết nên DB//MP, DC//MN. Từ đó, do O, M, D thẳng hàng, nên góc PMO = góc OMN <=> OM là phân giác góc PMN <=> DM là phân giác góc BDC
\(\Leftrightarrow\frac{MB}{MC}=\frac{DB}{DC}\)
Nhưng tứ giác ABDC là một hình bình hành nên BD = AC, CD = AB
do đó : \(\frac{DB}{DC}=\frac{AC}{AB}\)
Vì vậy :
góc PMO bằng góc OMN \(\Leftrightarrow\frac{MB}{MC}=\frac{AC}{AB}\)
Vậy với M là điểm trên cạnh BC sao cho \(\frac{MB}{MC}=\frac{AC}{AB}\) (hay M đối xứng với chân phân giác trong góc BAC qua trung điểm cạnh BC) thì góc PMO bằng góc OMN => Điều cần chứng minh
Cho tam giac ABC vuông tại A. đường trung tuyến AD.
a) Tính AD
b) Kẻ DH vuông góc với AB, DK vuông góc với AC. Chứng minh tứ giác AHDK là hình chữ nhật
c) Xác định vị trí của điểm D trên BC để tứ giác AHDK là hình vuông
d) Khi tứ giác AHDK LÀ HÌNH VUÔNG . chúng minh \(\dfrac{1}{AC}+\dfrac{1}{AB}=\dfrac{1}{DH}\)
Cho hình vuông ABCD có AB=a cố định. M là một điểm di động trên đường chéo AC.? Kẻ ME vuong góc với AB và MF vuông góc với BC. Xác định vị trí của M trên AC sao cho diện tích tam giác DEF nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Cho hình vuông ABCD có AB = a cố định. M là một điểm di động trên đường chéo AC. Kẻ ME vuông góc với AB và MF vuông góc với BC. Xác định vị trí của M trên AC sao cho diện tích tam giác DEF nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Cho hình vuông ABCD có AB=a cố định. M là một điểm di động trên đường chéo AC.? Kẻ ME vuong góc với AB và MF vuông góc với BC. Xác định vị trí của M trên AC sao cho diện tích tam giác DEF nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Cho hình chữ nhật ABCD, đường chéo AC và BD cắt nhau tại O. Lấy điểm P tùy ý trên OB, gọi M là điểm đối xứng với C qua P. Từ M kẻ ME vuông góc với AD ( E thuộc AD ) , kẻ MF vuông góc với AB ( F thuộc AB )
a, chứng minh AEMF là hình chữ nhật
b, chứng minh AMBD là hình thang
c, chứng minh E , F , P thẳng hàng
d, xác định vị trí cua P để AMBD là hình thang.
Cho hình chữ nhật ABCD, đường chéo AC và BD cắt nhau tại O. Lấy điểm P tùy ý trên OB, gọi M là điểm đối xứng với C qua P. Từ M kẻ ME vuông góc với AD ( E thuộc AD ) , kẻ MF vuông góc với AB ( F thuộc AB )
a, chứng minh AEMF là hình chữ nhật
b, chứng minh AMBD là hình thang
c, chứng minh E , F , P thẳng hàng
d, xác định vị trí cua P để AMBD là hình thang.