cho h.thang ABCD (AB song song CD)
Biết DAB^=DBC^ ; AB = 15cm
CD = 35cm
tính BD
Cho hình thang ABCD (AB song song với CD). Biết DAB^ = DBC^ ; AB=12cm ; CD=27cm ; Tính BD ?
* help me.....
Xét 2 tam giác ADB và BCD có:
DAB = DBC
BD chung
ABD = BDC (AB//DC,So le trong)
=> \(\Delta ABD\) ~ \(\Delta BDC\) (g.c.g)
=> \(\dfrac{AB}{DB}=\dfrac{DB}{DC}=>DB^2=AB.DC=>DB=\sqrt{324}=>DB=18cm\)
AB // CD(gt)\(\Rightarrow\)\(\widehat{ABD}\)=\(\widehat{BDC}\) (2 góc so le trong)
Xét \(\Delta\)ABD và \(\Delta\)BDC
có : \(\widehat{ABD}\)=\(\widehat{BDC}\)( CMT)
\(\widehat{DAB}\)=\(\widehat{DBC}\) (gt)
Do đó :\(\Delta\)ABD ~ \(\Delta\)BDC(gg)
\(\Rightarrow\)\(\dfrac{AB}{BD}=\dfrac{BD}{DC}\)(định nghĩa 2 tam giác đồng dạng)
\(\Rightarrow\)BD2 = AB. DC
\(\Rightarrow\)BD2 = 12.27
\(\Rightarrow\)BD2 = 324
\(\Rightarrow\)BD2 = 182
\(\Rightarrow\) BD = 18 (cm)
cho một h.thang vuông ABCD vuông góc tại A và D, đáy lớn CD dài hơn đáy bé AB là 3,5 cm và đáy CD = 5/4 đáy AB, cạnh AD dài 10cm. Trên AD lấy điểm E sao cho DE= 3cm. Từ E kẻ đường thẳng song song với hai đáy hình thang cắt BC tại G.
a. Tính d. tích h.thang ABCD
b. tính độ dài đoạn EG.
cho một h.thang vuông ABCD vuông góc tại A và D, đáy lớn CD dài hơn đáy bé AB là 3,5 cm và đáy CD = 5/4 đáy AB, cạnh AD dài 10cm. Trên AD lấy điểm E sao cho DE= 3cm. Từ E kẻ đường thẳng song song với hai đáy hình thang cắt BC tại G.
a. Tính d. tích h.thang ABCD
b. tính độ dài đoạn EG.
cho một h.thang vuông ABCD vuông góc tại A và D, đáy lớn CD dài hơn đáy bé AB là 3,5 cm và đáy CD = 5/4 đáy AB, cạnh AD dài 10cm. Trên AD lấy điểm E sao cho DE= 3cm. Từ E kẻ đường thẳng song song với hai đáy hình thang cắt BC tại G.
a. Tính d. tích h.thang ABCD
b. tính độ dài đoạn EG.
Cho hình thang ABCD (AB//CD) có DAB = DBC. Tính độ dài cạnh BD biết AB=4 cm, DC=9 cm.
Xét ΔABD và ΔBDC có
\(\widehat{BAD}=\widehat{DBC}\)
\(\widehat{ABD}=\widehat{BDC}\)(hai góc so le trong, AB//CD)
Do đó: ΔABD~ΔBDC
=>\(\dfrac{AB}{BD}=\dfrac{BD}{DC}\)
=>\(BD^2=4\cdot9=36\)
=>\(BD=\sqrt{36}=6\left(cm\right)\)
cho một h.thang vuông ABCD vuông góc tại A và D, đáy lớn CD dài hơn đáy bé AB là 3,5 cm và đáy CD = 5/4 đáy AB, cạnh AD dài 10cm. Trên AD lấy điểm E sao cho DE= 3cm. Từ E kẻ đường thẳng song song với hai đáy hình thang cắt BC tại G.
a. Tính d. tích h.thang ABCD
b. tính độ dài đoạn EG.
Giúp mình đi! Ai làm đầu tiên thấy đúng sẽ ''ti**'' cho nhé ~
Gọi AB là a, CD là b
Ta có b - a = 3.5 (1)
b = 5/4 a (2)
Thay 2 vào 1, giải ra được a = 14 , b = 17.5
Sau đó tính diện tích hình thang abcd theo công thức bình thường
b, Kẻ BN vuong góc với cd cắt eg tại m
Dễ dàng suy ra được EN = AB = 14
Dễ dàng suy ra được NC = CD - AB = 3.5
Dễ dàng suy ra được MN = 3 , Bn = 7
=> NG = 7/10 . 3.5 = 2.45
=> EG = 16.45
Cho h.thang ABCD (AB song son vs CD). Gọi MNPQ lần lượt là trg điểm của AD, BD, AC, BC
CM : MNPQ thẳng hàng
Cho hình thang ABCD (AB//CD) có góc DAB = góc DBC, AD = 3cm, AB = 5cm, BC = 4cm.
a) C/m: ∆DAB đồng dạng ∆CBD
b) Tính độ dài DB, DC
c) Tính diện tích hình thang ABCD, biết diện tích ∆ABD = 5cm²
a: Xét ΔDAB và ΔCBD có
góc DAB=góc CBD
góc ABD=góc BDC
=>ΔDAB đồng dạng với ΔCBD
b: ΔDAB đồng dạng với ΔCBD
=>DA/CB=DB/CD=AB/BD
=>3/4=DB/CD=5/BD
=>BD=5:3/4=20/3cm; DB^2=5*CD
=>5*CD=400/9
=>CD=80/9cm
hình thang ABCD(AB//CD;AB>CD) có AB=5cm,AD= 7cmBD=10cm và ^DAB=^ DBC