Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Linh Chi
Xem chi tiết
nthv_.
23 tháng 8 2021 lúc 20:31

Bn tham khảo tại đây nha:

https://hoc247.net/hoi-dap/toan-8/chung-minh-n-5-n-chia-het-cho-30-faq417269.html

Nguyễn Lê Phước Thịnh
23 tháng 8 2021 lúc 20:36

Ta có: \(n^5-n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Vì n;n-1;n+1 là ba số tự nhiên liên tiếp 

nên \(n\left(n-1\right)\left(n+1\right)⋮6\)

Vì \(n^5-n⋮5\)

mà \(n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮6\)

nên \(n^5-n⋮30\)

Vũ Quỳnh Thơ
Xem chi tiết
kiss_rain_and_you
17 tháng 10 2015 lúc 22:25

n^5-n= (n-1)n(n+1)(n^2+1)

(n-1)n(n+1) tích 3 số tự nhiên liên tiếp chia hết cho 3(1)

(n-1)n tích 2 ssoo tự nhiên liên tiếp chia hết cho 2(2)

còn n^5 và có cùng chữ số tận cuunfg nên hiệu có chữ sô tận cùng là 0 chia hết cho 5(3)

từ (1)(2)(3) => chia hết cho 30

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 8 2017 lúc 16:34

Tiên Phong Bùi
Xem chi tiết
anime khắc nguyệt
18 tháng 4 2022 lúc 18:13

TK ử đây :  https://hoc247.net/hoi-dap/toan-8/chung-minh-n-5-n-chia-het-cho-30-faq417269.html

Ngô Nhất Khánh
Xem chi tiết
Hoàng Phúc
30 tháng 1 2016 lúc 20:10

7n+4 hay 7n+4?

Minh Hiền
30 tháng 1 2016 lúc 20:12

\(7^{n+4}-7^n=7^n.\left(7^4-1\right)=7^n.\left(2401-1\right)=7^n.2400=7^n.80.30\text{ chia hết cho 30}\)

=> \(7^{n+4}-7^n\text{ chia hết cho 30}\left(đpcm\right)\)

Hoàng Phúc
30 tháng 1 2016 lúc 20:14

làm bên dưới r,kéo xuống

Mai Hồng Ngọc
Xem chi tiết
Nguyễn Tiến Dũng
15 tháng 9 2017 lúc 8:57

\(7^{n+4}-7^n\)

\(\Rightarrow7^n\cdot7^4-7^n\)

\(\Rightarrow7^n\cdot\left(7^4-1\right)\)

\(\Rightarrow7^n\cdot\left(2401-1\right)\)

\(\Rightarrow7^n\cdot2400\)

\(\Rightarrow7^n\cdot30\cdot80⋮30\left(đpcm\right)\)

\(3^{n+2}+3^n\)

\(\Rightarrow3^n\cdot3^2+3^n\)

\(\Rightarrow3^n\cdot\left(3^2+1\right)\)

\(\Rightarrow3^n\cdot\left(9+1\right)\)

\(\Rightarrow3^n\cdot10⋮10\left(đpcm\right)\)

do thanh thuy
Xem chi tiết
Đoàn Đức Hà
29 tháng 1 2021 lúc 23:10

Ta có: \(mn\left(m^{30}-n^{30}\right)=mn\left[\left(m^{30}-1\right)-\left(n^{30}-1\right)\right]=nm\left(m^{30}-1\right)-mn\left(n^{30}-1\right)\)

Do đó, nếu ta chứng minh được với mọi số nguyên dương \(k\)thì \(k\left(k^{30}-1\right)⋮14322\)thì ta sẽ có đpcm. 

Ta có: \(14322=2.3.7.11.31\).

Xét \(p\in\left\{2,3,7,11,31\right\}\). Nếu \(k\)chia hết cho \(p\)thì hiển nhiên \(k\left(k^{30}-1\right)\)chia hết cho \(p\). Nếu \(k\)không chia hết cho \(p\)thì \(k\)nguyên tố với \(p\). Theo định lí Fermat nhỏ, ta có:  \(k^{p-1}-1⋮p\).

Mặt khác, với mọi \(p\in\left\{2,3,7,11,31\right\}\)ta có \(\left(p-1\right)|30\).

Từ đó suy ra: \(k^{30}-1⋮p\).

Do vậy \(k\left(k^{30}-1\right)⋮p\)với mọi \(p\in\left\{2,3,7,11,31\right\}\).

Vậy \(k\left(k^{30}-1\right)⋮14322\).

Từ đây ta có đpcm. 

Khách vãng lai đã xóa
Nguyễn Hà Bảo Trâm
Xem chi tiết
Nguyen Thi Mai
27 tháng 10 2016 lúc 16:22

Chứng minh rằng: (n^5 – n) chia hết cho 30

Bạn vô link này nhé

Lê Hồng Ngọc
Xem chi tiết
luu thi tuyet
23 tháng 12 2015 lúc 16:48

Chtt nha!

Mọi ng ơi vào HOC24.VN  hay lắm lun...tick mk nhé

bí ẩn
23 tháng 12 2015 lúc 16:48

Ta biến đổi: 
n^5 - n = n.(n^4 - 1) = n.(n^2 - 1).(n^2 + 1) (*) 
Ở đây áp dụng hằng đẳng thức a^2 - 1 = (a-1).(a+1). 
Tiếp tục: 
(*) = n.(n-1).(n+1).(n^2+1) 

Ta nhận thấy trong 3 thừa số n, n-1, n+1 thì có 1 số chia hết cho 3 vì đây là 3 số tự nhiên liên tiếp. 
Trong 3 số đó cũng phải có một số chẵn nên tích của chúng chia hết cho 2. 
Vì 2 và 3 nguyên tố cùng nhau nên tích 3 số đó sẽ chia hết cho 6. 
Bây giờ ta chứng minh (*) chia hết cho 5 như sau: 

Nếu n chia hết cho 5 thì dĩ nhiên (*) chia hết cho 5. 
Nếu n chia cho 5 dư 1 hoặc dư 4 thì dĩ nhiên n-1 hoặc n+4 tương ứng sẽ chia hết cho 5. 
Nếu n chia cho 5 dư 2 hoặc 3 thì n có dạng : 
n= 5k+2 hoặc 5k + 3 
Khi đó n^2 +1 : 
Hoặc bằng: (5k+2)^2 +1 = 25k^2 + 20k +4 + 1= 5(5k^2 + 4k +1) , dĩ nhiên nó chia hết cho 5. 
Hoặc bằng: (5k+2)^2 +1 = 25k^2 + 30k +9 + 1= 5(5k^2 + 6k +2) , dĩ nhiên nó cũng chia hết cho 5. 
Ở đây ta áp dụng hằng đẳng thức : (a+b)^2 = a^2 + 2ab + b^2 

Vậy với mọi trường hợp khi n chia cho 5 có số dư là bao nhiêu, thì (*) cũng chia hết cho 5. 

(*) chia hết cho 5 và cho 6, mà 5 và 6 nguyên tố cùng nhau nên (*) chia hết cho 30.