Tìm giá trị lớn nhất của các biểu thức sau: 𝐴 = 𝑥(1 − 𝑥)
Giup mik voi
a) Tìm giá trị nhỏ nhất của biểu thức: 𝐴=(𝑥−1)(𝑥−3)+11
b) Tìm giá trịlớn nhất của biểu thức: 𝐵=5−4𝑥2+4𝑥
c) Cho 𝑥–𝑦=2. Tìm giá trịlớn nhất của đa thức 𝐵=𝑦2−3𝑥2
a) \(A=\left(x-1\right)\left(x-3\right)+11\)
\(=x\left(x-3\right)-\left(x-3\right)+11\)
\(=x^2-3x-x+3+11\)
\(=x^2-4x+14\)
\(=\left(x^2-4x+4\right)+10\)
\(=\left(x-4\right)^2+10\)
Vì \(\left(x-4\right)^2\) ≥ 0
⇒ A ≥ 10
Min A=10 ⇔ x=4
b) tương tự
Tìm giá trị lớn nhất của biểu thức A bằng
𝐵𝑖ể𝑢 𝑡ℎứ𝑐 𝐴=(𝑥√+1𝑥𝑦√+1+𝑥𝑦√+𝑥√1−𝑥𝑦√+1):(1−𝑥𝑦√+𝑥√𝑥𝑦√−1−𝑥√+1𝑥𝑦√+1) 𝑏𝑖ế𝑡1𝑥√+1𝑦√=6
A.9.
B.3.
C.18.
D.36.
7) a) Tìm giá trịnhỏnhất của biểu thức: 𝐴=(𝑥−1)(𝑥−3)+11
b) Tìm giá trịlớn nhất của biểu thức: 𝐵=5−4𝑥2+4𝑥
c) Cho 𝑥–𝑦=2. Tìm giá trịlớn nhất của đa thức 𝐵=𝑦2−3𝑥2
8) Tìm số𝑎đểđa thức 𝑥3−3𝑥2+5𝑥+𝑎chia hết cho đa thức 𝑥−2
\(7,\\ a,A=x^2-4x+3+11=\left(x-2\right)^2+10\ge10\\ \text{Dấu }"="\Leftrightarrow x=2\\ b,B=-\left(4x^2-4x+1\right)+6=-\left(2x-1\right)^2+6\le6\\ \text{Dấu }"="\Leftrightarrow x=\dfrac{1}{2}\\ c,x-y=2\Leftrightarrow x=y+2\\ \Leftrightarrow B=y^2-3x^2=y^2-3\left(y+2\right)^2\\ \Leftrightarrow B=y^2-3y^2-12y-12=-4y^2-12y-12\\ \Leftrightarrow B=-\left(4y^2+12y+9\right)-3=-\left(2y+3\right)^2-3\le-3\\ \text{Dấu }"="\Leftrightarrow y=-\dfrac{3}{2}\Leftrightarrow x=\dfrac{1}{2}\)
\(8,\\ \Leftrightarrow x^3-3x^2+5x+a=\left(x-2\right)\cdot a\left(x\right)\)
Thay \(x=2\Leftrightarrow8-12+10+a=0\Leftrightarrow a=-6\)
7) a) Tìm giá trịnhỏnhất của biểu thức: 𝐴=(𝑥−1)(𝑥−3)+11
b) Tìm giá trịlớn nhất của biểu thức: 𝐵=5−4𝑥2+4𝑥
c) Cho 𝑥–𝑦=2. Tìm giá trịlớn nhất của đa thức 𝐵=𝑦2−3𝑥2
8) Tìm số𝑎đểđa thức 𝑥3−3𝑥2+5𝑥+𝑎chia hết cho đa thức 𝑥−2
Bài 7:
a.
$A=(x-1)(x-3)+11=x^2-4x+3+11=x^2-4x+14$
$=(x^2-4x+4)+10=(x-2)^2+10\geq 10$
Vậy gtnn của $A$ là $10$ khi $x=2$
b.
$B=5-4x^2+4x=6-(4x^2-4x+1)=6-(2x-1)^2\leq 6$
Vậy gtln của $B$ là $6$ khi $2x-1=0\Leftrightarrow x=\frac{1}{2}$
c.
$x-y=2\Rightarrow x=y+2$. Khi đó:
$B=y^2-3x^2=y^2-3(y+2)^2=y^2-(3y^2+12y+12)=-2y^2-12y-12$
$=6-2(y^2+6y+9)=6-2(y+3)^2\leq 6$
Vậy $B_{\max}=6$
Bài 8:
Đặt $f(x)=x^3-3x^2+5x+a$
Theo định lý Bê-du, để $f(x)\vdots x-2$ thì $f(2)=0$
$\Leftrightarrow 6+a=0$
$\Leftrightarrow a=-6$
Bài 8 cách khác:
$x^3-3x^2+5x+a=x^2(x-2)-x(x-2)+3(x-2)+(a+6)$
$=(x-2)(x^2-x+3)+(a+6)$
Vậy $x^3-3x^2+5x+a$ chia $x-2$ có dư là $a+6$
Để phép chia là chia hết thì số dư phải bằng $0$
Tức là $a+6=0$
$\Rightarrow a=-6$
Biến đổi về các hằng đẳng thức, tìm giá trị nhỏ nhất của các biểu thức:
a) 𝐴 = −𝑥^2+ 2𝑥 + 5
b) 𝐵 = −𝑥^2− 8𝑥 + 10
c) 𝐶 = −3𝑥^2+ 12𝑥 + 8
d) 𝐷 = −5𝑥^2+ 9𝑥 − 3
e) 𝐸 = (4 − 𝑥)(𝑥 + 6) f)
𝐹 = (2𝑥 + 5)(4 − 3𝑥)
g) 𝐺 = (2 − 3𝑥)(2𝑥 + 3)
a: Ta có: \(A=-x^2+2x+5\)
\(=-\left(x^2-2x-5\right)\)
\(=-\left(x^2-2x+1-6\right)\)
\(=-\left(x-1\right)^2+6\le6\forall x\)
Dấu '=' xảy ra khi x=1
b: Ta có: \(B=-x^2-8x+10\)
\(=-\left(x^2+8x-10\right)\)
\(=-\left(x^2+8x+16-26\right)\)
\(=-\left(x+4\right)^2+26\le26\forall x\)
Dấu '=' xảy ra khi x=-4
c: Ta có: \(C=-3x^2+12x+8\)
\(=-3\left(x^2-4x-\dfrac{8}{3}\right)\)
\(=-3\left(x^2-4x+4-\dfrac{20}{3}\right)\)
\(=-3\left(x-2\right)^2+20\le20\forall x\)
Dấu '=' xảy ra khi x=2
d: Ta có: \(D=-5x^2+9x-3\)
\(=-5\left(x^2-\dfrac{9}{5}x+\dfrac{3}{5}\right)\)
\(=-5\left(x^2-2\cdot x\cdot\dfrac{9}{10}+\dfrac{81}{100}-\dfrac{21}{100}\right)\)
\(=-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{21}{20}\le\dfrac{21}{20}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{9}{10}\)
e: Ta có: \(E=\left(4-x\right)\left(x+6\right)\)
\(=4x+24-x^2-6x\)
\(=-x^2-2x+24\)
\(=-\left(x^2+2x-24\right)\)
\(=-\left(x^2+2x+1-25\right)\)
\(=-\left(x+1\right)^2+25\le25\forall x\)
Dấu '=' xảy ra khi x=-1
f: Ta có: \(F=\left(2x+5\right)\left(4-3x\right)\)
\(=8x-6x^2+20-15x\)
\(=-6x^2-7x+20\)
\(=-6\left(x^2+\dfrac{7}{6}x-\dfrac{10}{3}\right)\)
\(=-6\left(x^2+2\cdot x\cdot\dfrac{7}{12}+\dfrac{49}{144}-\dfrac{529}{144}\right)\)
\(=-6\left(x+\dfrac{7}{12}\right)^2+\dfrac{529}{24}\le\dfrac{529}{24}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{7}{12}\)
a)Tìm số nguyên x, biết : (𝑥+1)+(𝑥+2)+⋯+(𝑥+100)=5750.
b)Tìm giá trị lớn nhất cảu biểu thức A = 7−|𝑥−1| với 𝑥∈𝒁.
a) (x+1)+(x+2)+....+(x+100)=5750
<=> (x+x+x+....+x)+(1+2+....+100)=5750
<=> 100x+5050=5750
<=> 100x=700
<=> x=7
b) A=7-Ix-1I
Ta có Ix-1I =<0 với mọi x thuộc Z
=> 7-Ix-1I =<7 với mọi x thuộc Z hay A =< 7
Dấu "=" <=> Ix-1I=0
<=> x-1=0
<=> x=1
Vậy MaxA=7 đạt được khi x=1
(𝑥+1)+(𝑥+2)+⋯+(𝑥+100)=5750
=) x.100 + ( 100 + 99 + .... + 2 + 1 ) = 5750
=) x.100 + 5050 = 5750
=) x.100 = 5750 - 5050 = 200
=) x = 200/100 = 2
Vậy x = 2
Nếu mình sai thì các bạn sẽ cùng góp ý với mình nhoa !
b)Ta có:\(\left|x-1\right|\ge0\)
\(\Rightarrow-\left|x-1\right|\le0\)
\(\Rightarrow7-\left|x-1\right|\le7\)
\(\Rightarrow A\le7\)
Dấu bằng xảy ra khi:\(\left|x-1\right|=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Tìm giá trị lớn nhất hoặc nhỏ nhất của biểu thức sau (nếu có): a) A = (𝑥 + 1)2 − 3 b) B = 2 − (2𝑥 − 3)2 c) C = 3. |𝑥 − 1| + 2 d) D = 1 / 𝑥2+1
a, Để B là phân số <=> 3n-3 khác 0 <=> 3n khác 3 <=> n khác 1
b, Để B nguyên thì 5n+2 chia hết cho 3n-3
<=> 15n+6 chia hết cho 3n-3
<=> 15n+6-5(3n-3) chia hết cho 3n-3
<=> 21 chia hết cho 3n-3
<=> 7 chia hết cho n-1
=> n-1 thuộc Ư(7) = {1;-1;7;-7}
=> n thuộc {2;0;8;-6}
Câu 8. Cho tập hợp 𝐴={𝑥2+1\𝑥∈ℕ,𝑥≤5}. Hãy liệt kê các phần tử của tập hợp A.
A. 𝐴={0;1;2;3;4;5} B. 𝐴={1;2;5;10;17;26}
C. 𝐴={2;5;10;17;26} D. 𝐴={0;1;4;9;16;25}
nho moi nguoi giup em vs
. em cam on
Đáp án B bạn nhé, đối với \(x\in N,x\le5\) thì \(x\in\left\{0;1;2;3;4;5\right\}\) bạn thay các số này vào thì sẽ ra đáp án nhé
Cho 𝑥 + 𝑦 = 3. Tính giá trị của biểu thức: 𝐴 = 𝑥^2 + 2𝑥𝑦 + 𝑦^2 − 5𝑥 − 5𝑦 + 1 Cho 𝑥 − 𝑦 = 6. Tính giá trị của biểu thức: 𝐵 = 𝑥^2 + 6𝑥 + 𝑦^2 − 6𝑦 − 2𝑥𝑦 + 9 Cho 𝑥 − 2𝑦 = 1. Tính giá trị biểu thức 𝐶 = 𝑥^2 + 4𝑦^2 − 3𝑥 − 4𝑥𝑦 + 6𝑦 − 2
a) Ta có: M=x2−2xy+y2−10x+10yM=x2−2xy+y2−10x+10y
=(x−y)2−10(x−y)=(x−y)2−10(x−y)
=92−10⋅9=−9 mình bt thế thôi mog bn thông cảm.
a) Ta có: M=x2−2xy+y2−10x+10yM=x2−2xy+y2−10x+10y
=(x−y)2−10(x−y)=(x−y)2−10(x−y)
=92−10⋅9=−9
máy mình nó bị lỗi nên bn thông cảm nhé trả lời vừa đây mới là đugs