Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Oanh Nè
Xem chi tiết
danghoangquochuy
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 11 2021 lúc 23:26

a: CH=6cm

AB=4cm

\(AC=4\sqrt{3}\left(cm\right)\)

Hùng Chu
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 8 2021 lúc 20:24

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AB^2=10^2-8^2=36\)

hay AB=6(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AB\cdot AC=AH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{36}{10}=3.6\left(cm\right)\\CH=\dfrac{64}{10}=6.4\left(cm\right)\\AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\end{matrix}\right.\)

Anh Minh
Xem chi tiết
Hoang Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2023 lúc 21:10

a: AC=căn 5^2-3^2=4cm

AH=3*4/5=2,4cm

BH=3^2/5=1,8cm

CH=5-1,8=3,2cm

b: \(BH=\sqrt{60^2:144}=5\left(cm\right)\)

BC=144+5=149cm

\(AB=\sqrt{5\cdot149}=\sqrt{745}\left(cm\right)\)

\(AC=\sqrt{144\cdot149}=12\sqrt{149}\left(cm\right)\)

c: \(HC=\sqrt{AC^2-AH^2}=\dfrac{144}{13}\left(cm\right)\)

\(BH=\dfrac{AH^2}{HC}=\dfrac{25}{13}cm\)

BC=BH+CH=13(cm)

AB=căn 13^2-12^2=5cm

Gia Huy
11 tháng 7 2023 lúc 21:26

a

Áo dụng đl pytago vào tam giác ABC vuông tại A:

\(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

Theo hệ thức lượng vào tam giác ABC vuông tại A có đường cao AH:

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{3^2}{5}=1,8\left(cm\right)\)

\(CH=BC-BH=5-1,8=3,2\left(cm\right)\)

\(AH.BC=AB.AC\Rightarrow AH=\dfrac{3.4}{5}=2,4\left(cm\right)\)

b

Áp dụng đl pytago vào tam giác AHC vuông tại H có:

\(AC=\sqrt{AH^2+HC^2}=\sqrt{60^2+144^2}=156\left(cm\right)\)

Theo hệ thức lượng vào tam giác ABC vuông tại A, đường cao AH có:

\(AC^2=HC.BC\Rightarrow BC=\dfrac{AC^2}{HC}=\dfrac{156^2}{144}=169\left(cm\right)\)

\(BH=BC-HC=169-144=25\left(cm\right)\)

\(AB^2=BH.BC\Rightarrow AB=\sqrt{25.169}=65\left(cm\right)\)

c

Áp dụng đl pytago vào tam giác AHC vuông tại H:

\(HC=\sqrt{AC^2-AH^2}=\sqrt{12^2-\left(\dfrac{60}{13}\right)^2}=\dfrac{144}{13}\approx11,08\left(cm\right)\)

Theo hệ thức lượng vào tam giác ABC đường cao AH có:

\(AH^2=HB.HC\Rightarrow HB=\dfrac{AH^2}{HC}=\dfrac{\left(\dfrac{60}{13}\right)^2}{\dfrac{144}{13}}=\dfrac{25}{13}\approx1,92\left(cm\right)\)

\(BC=HB+HC=\dfrac{25}{13}+\dfrac{144}{13}=13\left(cm\right)\)

\(AB^2=HB.BC\Rightarrow AB=\sqrt{HB.HC}=\sqrt{\dfrac{144}{13}.\dfrac{25}{13}}=\dfrac{60}{13}\approx4,62\left(cm\right)\)

Ngọc ý
Xem chi tiết
Minh Hồng
12 tháng 5 2022 lúc 16:46

(Tự vẽ hình)

a) Áp dụng định lý Pytago ta có: 

\(BC^2=AB^2+AC^2=9^2+12^2=225\Rightarrow BC=15\left(cm\right)\)

Xét \(\Delta AHB\) và \(\Delta CAB\) có:

\(\widehat{AHB}=\widehat{CAB}=90^0\);

\(\widehat{B}\) chung

\(\Rightarrow\Delta AHB\sim\Delta CAB\) (g.g)

b) Do \(\Delta AHB\sim\Delta CAB\Rightarrow\dfrac{AH}{AB}=\dfrac{AC}{BC}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{9.12}{15}=7,2\left(cm\right)\)

c) Xét \(\Delta BAD\) và \(\Delta BHK\) có:

\(\widehat{BAD}=\widehat{BHK}=90^0\)

\(\widehat{ABD}=\widehat{HBK}\) (tính chất phân giác)

\(\Rightarrow\Delta BAD\sim\Delta BHK\left(g.g\right)\Rightarrow\dfrac{BA}{BD}=\dfrac{BH}{BK}\Rightarrow BA.BK=BH.BD\)

Ngô Thị Thúy Hường
Xem chi tiết

12AB.AC" role="presentation" style="border:0px; box-sizing:inherit; direction:ltr; display:inline-block; float:none; font-size:18.08px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">

12AH.BC" role="presentation" style="border:0px; box-sizing:inherit; direction:ltr; display:inline-block; float:none; font-size:18.08px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">

12AB.AC=12AH.BC" role="presentation" style="border:0px; box-sizing:inherit; direction:ltr; display:inline-block; float:none; font-size:18.08px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">

AB.ACBC=3.45=2,4(cm)" role="presentation" style="border:0px; box-sizing:inherit; direction:ltr; display:inline-block; float:none; font-size:18.08px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">

Khách vãng lai đã xóa

ACBH

a) Áp dụng pi ta go ta có : AB2 = AH2 + BH2 = 162 + 252 = 881 

=> AB = 881

Lại có : BH.HC =  AH2

<=> HC.25 = 162

<=> HC.25 = 256

<=> HC = 256 : 25 = 10,24

Ta có : BC = HC + BH = 10,24 + 25 = 35,24 

Áp dụng bi ta go : AC2 = AH2 + HC2 = 162 + 10,242 = 360,8576

=> AC = 

Khách vãng lai đã xóa
Ng Khánh Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 12 2021 lúc 22:00

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=AB^2\left(1\right)\)

Xét ΔABK vuông tại A có AD là đường cao

nên \(BD\cdot BK=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BC=BD\cdot BK\)

Thu Hiền
Xem chi tiết