Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đăng Trần Hải
Xem chi tiết
Phan Gia Huy
11 tháng 2 2020 lúc 20:16

\(2\left(x^4+y^4\right)\ge xy^3+x^3y+2x^2y^2\)

\(\Leftrightarrow\left(x^4-2x^2y^2+y^4\right)+\left(x^4-x^3y\right)+\left(y^4-xy^3\right)\ge0\)

\(\Leftrightarrow\left(x^2-y^2\right)^2+x^3\left(x-y\right)+y^3\left(y-x\right)\ge0\)

\(\Leftrightarrow\left(x^2-y^2\right)^2+\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\) 

\(\Leftrightarrow\left(x^2-y^2\right)^2+\left(x-y\right)^2\left[\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{2}\right]\ge0\) ( đúng )

Khách vãng lai đã xóa
Stawaron 1
Xem chi tiết
Nguyễn Xuân Anh
16 tháng 4 2019 lúc 21:16

a) \(\text{ }x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^4+y^4-x^3y-xy^3\ge0\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)(ĐPCM) 

*NOTE: chứng minh đc vì (x-y)^2  >= 0 ;  x^2  +xy +y^2 > 0

Stawaron 1
16 tháng 4 2019 lúc 21:21

mình cũng làm đến nơi rồi nhưng sợ x^2+xy+y^2 chưa chắc lớn hơn 0 thanks bạn nhé

ta có \(\left(x-y\right)^2\ge0\)

<=> \(x^2+y^2\ge2xy\)

<=>\(x^2+y^2+2xy\ge4xy\)

<=>\(\left(x+y\right)^2\ge4xy\)

<=>\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)

<=>\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Chu Lương Tâm
Xem chi tiết
Tong Duy Anh
13 tháng 1 2018 lúc 15:15

\(x^4+y^4\ge xy^3+x^3y\\ \Leftrightarrow x^4-xy^3+y^4-x^3y\ge0\\ \Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\\ \Leftrightarrow\left(x-y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\ge0\\ \Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\\ \)

Ma \(\left(x-y\right)^2\ge0\left(\forall x,y\right)\\ x^2+xy+y^2>0\left(\forall x,y\right)\)\(\Rightarrow x^4+y^4\ge xy^3+x^3y\left(\forall x,y\right)\left(dpcm\right)\)

Hồ An
Xem chi tiết
Shurima Azir
15 tháng 11 2018 lúc 22:48

bđt <=> x4 + y4 - x3y - xy3 ≥ 0

<=> x(x3 - y3) - y(x3- y3) ≥ 0

<=> x(x - y)(x2 + xy + y2) - y(x - y)(x2 + xy + y2) ≥ 0

<=> (x - y)2(x2 + xy + y2) ≥ 0 (1)

Ta có: (x - y)2 ≥ 0 ∀x, y

x2 + xy + y2 = (x + \(\dfrac{1}{2}\)y)2 + \(\dfrac{3}{4}\)y2 ≥ 0 ∀ x, y

=> (1) luôn đúng

Dấu "=" xảy ra <=> x = y

Rimuru tempest
16 tháng 11 2018 lúc 0:16

theo bđt cauchy schwars ta có:

\(\left\{{}\begin{matrix}x^4+y^4\ge2x^2y^2\\x^4+x^2y^2\ge2x^3y\\y^4+x^2y^2\ge2xy^3\end{matrix}\right.\)

\(\Leftrightarrow2\left(x^4+y^4\right)+2x^2y^2\ge2\left(xy^3+x^3y\right)+2x^2y^2\)

\(\Leftrightarrow x^4+y^4\ge xy^3+x^3y\)

vậy đpcm

Hara Nisagami
Xem chi tiết
Phung Minh Quan
17 tháng 12 2019 lúc 15:10

bđt \(\Leftrightarrow\)\(\left(x-y\right)^2\left(x^2+y^2+\frac{3}{2}xy\right)\ge0\) đúng với mọi x, y

Khách vãng lai đã xóa
khanhhuyen6a5
Xem chi tiết
Nhã Doanh
26 tháng 5 2018 lúc 17:09

Khai triển rồi thu gọn

Phạm Ngọc Nam
19 tháng 9 2019 lúc 21:09

đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải

Kiều Ngọc Tú Anh
Xem chi tiết
Như Ý
26 tháng 10 2018 lúc 18:12

\(\Leftrightarrow x^4+y^4-xy^3-x^3y\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x^3-y^3\right)\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+\dfrac{y^2}{4}+\dfrac{3}{4}y^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left[\left(x+\dfrac{y}{2}\right)^2+\dfrac{3}{4}y^2\right]\ge0\)(đúng)

\("="\Leftrightarrow x=y\)

Tú Anh
Xem chi tiết
Trần Thanh Phương
26 tháng 10 2018 lúc 18:00

\(x^4+y^4\ge xy^3+x^3y\)

\(x^4+y^4-xy^3-x^3y\ge0\)

\(x^3\left(x-y\right)+y^3\left(y-x\right)\ge0\)

\(x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\left(x-y\right)\left(x^3-y^3\right)\ge0\)

\(\left(x-y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\ge0\)

\(\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)

Dễ dàng c/m được \(x^2+y^2>xy\Rightarrow\left(x^2+xy+y^2\right)\ge0\)

\(\Rightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\left(đpcm\right)\)

Trần Thanh Phương
26 tháng 10 2018 lúc 18:05

Cái chỗ \(x^2+y^2>xy\)phải là \(x^2+y^2\ge0\)nha -_-"

Dấu "=" <=> x=y=0

Chứng minh nè :

\(x^2+y^2=\left(x+y\right)^2-2xy\ge2xy\ge xy\)

Dấu "=" xảy ra <=> x=y=0

:))

nguyễn phan thùy dung
Xem chi tiết
pham trung thanh
27 tháng 9 2017 lúc 21:10

Áp dụng BĐT Cô-si, ta có

\(x^2+\frac{y^2}{4}\ge2\sqrt{x^2.\frac{y^2}{4}}=2\left|\frac{xy}{2}\right|\)(1)

Lại có \(\left|\frac{xy}{2}\right|\ge\frac{xy}{2}\)(2)

Từ (1) và (2) \(\Rightarrow x^2+\frac{y^2}{4}\ge xy\)