Chứng minh với mọi x,y ta có : \(x^4+y^4>xy^3+x^3y\)
Chứng minh rằng:\(2\left(x^4+y^4\right)\ge xy^3+x^3y+2x^2y^2\)
với mọi x,y
\(2\left(x^4+y^4\right)\ge xy^3+x^3y+2x^2y^2\)
\(\Leftrightarrow\left(x^4-2x^2y^2+y^4\right)+\left(x^4-x^3y\right)+\left(y^4-xy^3\right)\ge0\)
\(\Leftrightarrow\left(x^2-y^2\right)^2+x^3\left(x-y\right)+y^3\left(y-x\right)\ge0\)
\(\Leftrightarrow\left(x^2-y^2\right)^2+\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)
\(\Leftrightarrow\left(x^2-y^2\right)^2+\left(x-y\right)^2\left[\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{2}\right]\ge0\) ( đúng )
ai biết giúp mình với mai ktra rồi .Chứng minh với mọi x, y:\(x^4+y^4\ge x^3y+xy^3\)
cho x,y > 0. Chứng minh : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
cho x2+y2=1.Chứng minh: \(\left(x+y\right)^2\le2\)
a) \(\text{ }x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4+y^4-x^3y-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)(ĐPCM)
*NOTE: chứng minh đc vì (x-y)^2 >= 0 ; x^2 +xy +y^2 > 0
mình cũng làm đến nơi rồi nhưng sợ x^2+xy+y^2 chưa chắc lớn hơn 0 thanks bạn nhé
ta có \(\left(x-y\right)^2\ge0\)
<=> \(x^2+y^2\ge2xy\)
<=>\(x^2+y^2+2xy\ge4xy\)
<=>\(\left(x+y\right)^2\ge4xy\)
<=>\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)
<=>\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
CMR với mọi x,y ta có :
\(x^4+y^4\ge xy^3+x^3y\)
\(x^4+y^4\ge xy^3+x^3y\\ \Leftrightarrow x^4-xy^3+y^4-x^3y\ge0\\ \Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\\ \Leftrightarrow\left(x-y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\ge0\\ \Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\\ \)
Ma \(\left(x-y\right)^2\ge0\left(\forall x,y\right)\\ x^2+xy+y^2>0\left(\forall x,y\right)\)\(\Rightarrow x^4+y^4\ge xy^3+x^3y\left(\forall x,y\right)\left(dpcm\right)\)
Chứng minh rằng với mọi số x,y ta có
x4+y4≥ x3y+xy3
bđt <=> x4 + y4 - x3y - xy3 ≥ 0
<=> x(x3 - y3) - y(x3- y3) ≥ 0
<=> x(x - y)(x2 + xy + y2) - y(x - y)(x2 + xy + y2) ≥ 0
<=> (x - y)2(x2 + xy + y2) ≥ 0 (1)
Ta có: (x - y)2 ≥ 0 ∀x, y
x2 + xy + y2 = (x + \(\dfrac{1}{2}\)y)2 + \(\dfrac{3}{4}\)y2 ≥ 0 ∀ x, y
=> (1) luôn đúng
Dấu "=" xảy ra <=> x = y
theo bđt cauchy schwars ta có:
\(\left\{{}\begin{matrix}x^4+y^4\ge2x^2y^2\\x^4+x^2y^2\ge2x^3y\\y^4+x^2y^2\ge2xy^3\end{matrix}\right.\)
\(\Leftrightarrow2\left(x^4+y^4\right)+2x^2y^2\ge2\left(xy^3+x^3y\right)+2x^2y^2\)
\(\Leftrightarrow x^4+y^4\ge xy^3+x^3y\)
vậy đpcm
với x,y là hai số thực tùy ý, chứng minh rằng ta luôn có : \(x^{4^{ }}+y^4>=\frac{1}{2}\left(x^3y+xy^3\right)+x^2y^2\)
bđt \(\Leftrightarrow\)\(\left(x-y\right)^2\left(x^2+y^2+\frac{3}{2}xy\right)\ge0\) đúng với mọi x, y
chứng minh các đẳng thức sau:
a)(x+y)(x^3-x^2y+xy^2+y^3)=x^4+y^4
b)(x-y)(x^3+x^2y+xy^2+y^3)=x^4-y^4
c)(x+y)(x^4-x^3y+x^2y^2-xy^3+y^4)=x^5+y^5
d)(x-y)(x^4+x^3y+x^2y^2+xy^3+y^4)=x^5-y^5
đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải
cmr x^4+y^4 >=xy^3+x^3y với mọi x,y
\(\Leftrightarrow x^4+y^4-xy^3-x^3y\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x^3-y^3\right)\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+\dfrac{y^2}{4}+\dfrac{3}{4}y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left[\left(x+\dfrac{y}{2}\right)^2+\dfrac{3}{4}y^2\right]\ge0\)(đúng)
\("="\Leftrightarrow x=y\)
cmr x^4+y^4 >=xy^3+x^3y với mọi x,y
\(x^4+y^4\ge xy^3+x^3y\)
\(x^4+y^4-xy^3-x^3y\ge0\)
\(x^3\left(x-y\right)+y^3\left(y-x\right)\ge0\)
\(x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\left(x-y\right)\left(x^3-y^3\right)\ge0\)
\(\left(x-y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\ge0\)
\(\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)
Dễ dàng c/m được \(x^2+y^2>xy\Rightarrow\left(x^2+xy+y^2\right)\ge0\)
\(\Rightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\left(đpcm\right)\)
Cái chỗ \(x^2+y^2>xy\)phải là \(x^2+y^2\ge0\)nha -_-"
Dấu "=" <=> x=y=0
Chứng minh nè :
\(x^2+y^2=\left(x+y\right)^2-2xy\ge2xy\ge xy\)
Dấu "=" xảy ra <=> x=y=0
:))
chứng minh rằng với mọi x,y ta có:
x2+\(\frac{^{y^2}}{4}\)>= xy
Áp dụng BĐT Cô-si, ta có
\(x^2+\frac{y^2}{4}\ge2\sqrt{x^2.\frac{y^2}{4}}=2\left|\frac{xy}{2}\right|\)(1)
Lại có \(\left|\frac{xy}{2}\right|\ge\frac{xy}{2}\)(2)
Từ (1) và (2) \(\Rightarrow x^2+\frac{y^2}{4}\ge xy\)